
NASA Contractor Report 3462

Measurement of Fault Latency in
a Digital Avionic Mini Processor

John G. McGough and Fred L. Swern

CONTRACT NAS l- 15946
OCTOBER 1981

/’

I I

NASA Contractor Report 3462

Measurement of Fault Latency in
a Digital Avionic Mini Processor

John G. McGough and Fred L. Swern
Bendix Corporation
Teterboro, New Jersey

Prepared for
Langley Research Center
under Contract NASl-15946

National Aeronautics
and Space Administration

Scientific and Tichnical
information Branch

1981

TABLE OF CONTENTS

1.0

2.0

3.0

4.0

INTRODUCTION.
1.1 Background.
1.2 Objectives of the Study
1.3 Foreword

SUMMARY

FAULT MODELLING AND SELECTION
3.1 FaultModel
3.2 Method of Selecting Faults.

DESCRIPTION OF EXPERIMENTS.
4.1 Definition of Failure Detection :
4.2 Definition of Failure Detection Coverage.
4.3 Indistinguishable Faults and Effects on Coverage.
4.4 Objectives of Experiments
4.5 Phase I Experiments

4.5.1 Fi bonacci (FIB)
4.5.2 Fetch and Store (FETSTO).
4.5.3 Add and Subtract (ADDSUB)
4.5.4 Search and Compute (SERCOM)
4.5.5 Linear Convergence (LINCON)
4.5.6 Quadratic (QUAD).

4.6 Phase II Experiments.
4.6.1 Self-Test

5.0 RESULTS OF EXPERIMENTS.
5.1
5.2

5.3

5.4
5.5

Distribution of Faults.
Phase I Experiments
5.2.1 FETSTO Experiment.
5.2.2 ADDSUB Experiment
5.2.3 FIB Experiment.
5.2.4 QUAD Experiment
5.2.5 SERCOM Experiment
5.2.6 LINCON Experiment
Phase II Experiments.
5.3.1 Indistinguishable Fault Estimates
5.3.2 Self-Test Coverage.
5.3.3 Gate-Level Faults
5.3.4 Component-Level Faults.
URN Model Parameters.
Accuracy and Confidence of Results.
5.5.1 Phase I Results
5.5.2 Phase II Results.
5.5.3 URN Model Results

8
8
8
9

10

12
12
13

14
14
14
16
18
19
20
21
22
23
24
25
26
28

30
30
30
30
31
32
33
34
35
36
36
36
37
38
38
39
39
41
41

TABLE OF CONTENTS (CONTINUED)

6.0 SUMMARY OF EXPERIMENTS. 131
6.1 Phase I Experiments 131
6.2 Phase II Experiments. 132
6.3 URN Model Distributions 132

7.0 ANALYSIS OF UNDETECTED FAULTS 137
7.1 Phase I Experiments 137

7.1.1 Undetected Faults in Phase I. 137
7.2 Phase II Experiments. 137

7.2.1 Undetected Faults in Pha;e’Ii : : : : : : : : : : : . 138
7.3 Gate-Level Versus Component-Level Faults. 139

8.0 UNIPROCESSOR BIT. 141

9.0 URNMODEL.............................
9.1 URN Model Description . 148
9.2 Generalized URN Model . 150

9.2.1 An Alternate Model: 1 : : : : : : : : : : : : : : : . 151
9.2.2 Examples. 155
9.2.3 Comparison of Models. 156

10.0 STATISTICAL ANALYSES. I , . . . , 159
10.1 Introduction. ” 159
lo.2 Estimators for Self-Test Coverage 160
10.3 Estimators for Latency. . . . _ v 161

10.3.1 Corrections for Indistinguishable Faults. . . . I , c 162
10.4 Estimators for URN Model Parameters . . , 162
10.5 Accuracy and Confidence of Coverage Estimates . . . , . . . c 164
10.6 Accuracy and Confidence of Latency Estimates. , c . 166
10.7 Accuracy and Confidence of URN Model Parameter Estimates. . . 168

11.0 EMULATION DESCRIPTION 175
11.1 BDX-930 Architecture: : : : : : : : : : : : : : : : . . ~ . . 175
11.2 Description of the Emulator 177
11.3 Preprocessor and Postprocessor. 181
11.4 Typical Circuit Representations 182
11.5 Summary of Emulation Characteristics. 182

12.0 EXTENSION OF EMULATOR TO MULTIPROCESSOR SYSTEMS 200
12.1 Description of SIFT (see ref (4)) 200
12.2 SIFT Emulator 200
12.3 SIFT Fault Injection Experiments. 201

13.0 CONCLUSIONS , 204

14.0 RECOMMENDATIONS FOR FUTURE STUDIES. 207

15.0 REFERENCES. 208

3

LIST OF ILLUSTRATIONS

FIGURE

1
:abl
2c
2d
2e II--

3c
3d
3e 3

4a
4b)-
4c
4d
4e I

:;I
4h
4i 3

:ab=

z:
5e I

:,'I

$l

6a
6b
6c I-
6
6k

"I 6f
69
6h3

TITLE PAGE

Flow Diagram for LINCON 29

FETSTO - Gate-Level Faults. , 50

FETSTO - Gate-Level Faults by Partition , . . a 52

FETSTO - Component-Level Faults 55

FETSTO - Component-Level Faults by Partition. 57

ADDSUB - Gate-Level Faults. 60

ADDSUB - Gate-Level Faults by Partition 62

ADDSUB - Component-Level Faults 65

ADDSUB - Component-Level Faults by Partition. 67

FIB - Gate-Level Faults 70

FIB - Gate-Level Faults by Partition, , 72

FIB - Component-Level Faults. 75

FIB - Component-Level by Partition. 77

QUAD - Gate-Level Faults. 80

QUAD - Gate-Level Faults by Partition 82

QUAD - Component-Level Faults 85

QUAD - Component-Level Faults by Partition. 87

SERCOM - Gate-Level Faults. s . = . . . 90

SERCOM - Gate-Level by Partition. 93

SERCOM - Component-Level Faults 96

5

LIST OF ILLUSTRATIONS (CONTINUED)

FIGURE

6i -+
6j

:", =
7c
7d
7e

8a
8b 3

ga 3 9b

12

13
14
15
16a
16b
17a
17b
18a
18b
19
20
21
22
23
24

TITLE PAGE

S ERCOM - Component-Level Faults by Partition. 98

LINCON - Gate-Level Faults. 100

LINCON - Gate-Level Faults by Partition 102

LINCON - Component-Level Faults 105

LINCON - Component-Level Faults by Partition. 107

URN Model FETSTO - Gate-Level Faults. 116

URN Model FETSTO - Component-Level Faults 118

URN Model ADDSUB - Gate-Level Faults. 120

URN Model ADDSUB - Component-Level Faults 122

URN Model FIB - Gate-Level Faults 124

URN Model FIB - Component-Level Faults. 126

Detected Combined Faults vs No. of Executed
Instructions (Gate-Level Faults).

Detected Combined Faults vs No. of Executed ' . . * ' ' '
. 134

Instructions (Component-Level Faults) 135
processor Architecture. 186
Basic Two Input and Gate Fault Model. 187
Typical Gate-Level Computation. 188
Gate-Level D-Latch Model. 190
Typical Functional D-Latch. 191
Tri-State Bus 1%
Simulation of Tri-State Bus 192
Gate-Level to Register-Level Conversion Algorithm 193
Register-Level to Gate-Level Conversion Algorithm 194
IC175...........................19 5
1~151...........................19 6
IC 153.197
IC158198
SIFT System 203
SIFT Computer 203

LIST OF TABLES

TABLE

1
2
3a

3b

4a

4b

5
6
7
8
9
10
11
12
13

14
15
16

17

18
19
20
21
22
23
24
25
26
27
28
29

TITLE PAGE

Failure Rates of Partitions of the CPU. 44
Number of Faults Injected
Phase I Experiments - Number of Gate:Level'Fiuits ' * ' * *

45

Injected by Partitions. 46
Phase I Experiments - Number of Component-Level

Faults Injected by Partitions 47
Phase II Experiments - Number of Gate-Level Fail& ' ' ' *

Injected by Partitions. 48
Phase II Experiments - Number of Component-Level

Faults Inj.ected by Partitions 48
FETSTO Latency Data 49
ADDSUB Latency Data 59
FIB Latency Data. 69
QUAD Latency Data .L 79
SERCOM Latency Data 89
LINCON Latency Data 89
Summary of Phase I Results. 109
Self-Test Data. 110
Fault Detection by the Individual Tests Comprising

Self-Test 111
Self-Test Coverage Summaries by Partition 112
URN Model Distributions and Parameter Estimates 114
Error Covariance Matrix Elements for URN Model

Estimates ...
Inverse Error Covariance'Matrii Elemen&'for'URN' ' ' ' '

. 128

Model Estimates
Intermediate URN Model Parameter Estimates: :

129
....... 130

Instruction Mix vs Detection in Phase I Experiments 136
Failure Rates of Critical Components. 146
Inflight Bit Test Procedures. 147
Error Ellipse for a Confidence Level of y = .95 173
Maximum Error Versus Sample Size and Confidence Level ... 174
Parallel Operation of the BDX-930 Processor 183
Components of the BDX-930 CPU 184
Microcircuits and Equivalent Gate Count 185
Value of Nodes. 189
Emulator Characteristics. 199
Comparison of Latency Estimates 206

1.0 INTRODUCTION

1.1 Background

The advent of redundant and highly reliable airborne digital systems has
raised a number of critical issues in connection with the ability of such sys-
tems to detect, isolate and recover from hardware faults. In such systems fault
detection is a critical factor in achieving system reliability. The present
study is essentially an investigation of the nature of faults and the dynamics
of fault propagation and detection in digital systems.

Most airborne systems, present and projected, employ comparison-monitoring,
self-test or a combination of both techniques to achieve the requisite detection
and isolation capability. One of the problems of fault detection by either
technique, is that a fault may not manifest itself in a comparison-monitored
variable or at an accessible output of a component until the faulted component
is exercised bv a suitable combination of inout or internal state. As a conse-
quence,
son-mon
latency
tively

the fault may not be detected by self-test or, in the case of compari-
toring, the fault may remain latent for long periods of time. Prolonged
in a redundant system can reduce survivability since such faults effec-
ncrease the time-on-risk.

In an effort to determine the dynamics of fault propagation and detection
in a di 9 ital computer, NASA-Langley Research Center sponsored a pilot program

entitled "Modeling of a Latent Fault Detector in a Digital System" (ref. l!, in 1978.
The objectives were to study how software reacts to a fault, to account for as
many variables as possible affecting detection and to forecast a given software
program's detecting ability prior to computation. A series of fault injection
experiments were conducted using an emulation of a small, idealized processor
with a very limited instruction set. The results of the study were surprising
since they contradicted the prevailing belief that most hardware faults cause
catastrophic computational errors. In fact, the study showed that a significant
proportion of faults remained latent after many repetitions of a program. How-
ever interesting these results were, they were greeted with a healthy skepti-
cism. It was not clear, for instance, that similar results could be obtained
for a real processor, preferably one used in actual airborne applications. AS a
consequence, it was decided to extend the study to include a real avionics
processor.

1.2 Objectives of the Study

The present study was based on the premise that a gate-level emulation of
an avionics, airborne processor was available. Prior to award of contract the
Bendix Research Laboratories and the Bendix Flight Systems Division had devel-
oped a gate-level emulation of the Bendix BDX-930 digital computer. This compu-
ter is used in a number of flight control and avionics programs, notably on the
AFT1 F-16 FBW system and SIFT.- SIFT (Software Implemented Fault Tolerance) is a
fault tolerant digital computer system developed by SRI, International with
Bendix, Flight Systems Division, as a major subcontractor. A description of the
BDX-930 and its emulation will be given in subsequent sections.

8

Underlying the entire study was the intention to demonstrate that gate-
level emulation was a viable and practical tool for coverage measurement failure
modes and effects analyses of digital systems. It was for this reason that so
much effort was expended in developing a fast and efficient emulator. Admittedly,
there are many gate-level emulations available that emulate to a greater level
of detail and, perhaps, even with greater fidelity then the one used in the pre-
sent study. An informal survey of such emulators indicated that, except for
hardware emulators, the run time was prohibitive, being on the order of 500,000
to l,OOO,OOO slower than the emulated processor.

As indicated previously, a primary objective of the present study is to
ascertain whether and to what extent the results of the pilot study apply to a
real avionics processor. Specifically,

l Given a set of software programs ranging from a simple "fetch and store"
to a complicated, multi-instruction algorithm, inject a single fault,
selected at random, and observe the time to detection assuming that de-
tection occurs whenever there is a difference between the computed out-
puts of the faulted and non-faulted processors executing the same program.
Determine differences in detection time when faults are injected at the
gate-level and component-level.

l Based upon derived empirical latency distributions, develop and validate
a model of fault latency that will forecast a software program's detect-
ing ability.

The following additional objectives were added to those of the pilot study:

l Given a typical avionics self-test program inject faults at both the
gate-level and component-level and determine the proportion of faults de-
tected.

l Determine why undetected faults were undetected.

l Recommend how the emulation of the BDX-930 can be extended to multi-pro-
cessor systems such as SIFT.

l Determine the proportion of faults detected by a miniprocessor BIT
(built-in-test program) irrespective of self-test.

1.3 Foreword

The authors would like to express their appreciation to:

NASA-Langley Research Center who conceived and initiated the study; NASA Project
Engineer Salvatore Bavuso whose advice and encouragement were indispensable and
made the task a pleasant one; Bendix Research Laboratories who did most of the
development of the emulator; Dr. Allen White of Kentron International for his
critique of the statistical analyses; Prof. Mario Barbacci of Carnegie-Mellon.
University for his advice and assistance in developing the emulator.

Use of trade names of manufacturers in this report does not constitute an
official endorsement of such products or manufacturers, either expressed or
implied, by the National Aeronautics and Space Administration.

2.0 SUMMARY

l A gate-level emulation of the Bendix BDX-930 digital computer was devel-
oped prior to the present study for the purpose of analyzing failure
modes and effects in digital systems. The run time of the emulation was
25,000 times slower than the BDX-930 when hosted on a PDP-10.

l Six software programs were emulated and faults were injected at both the
gate-level and pin-level (i.e., component-level). The resultant computed
outputs were compared with those of a non-faulted computer executing the
same program. A fault was considered detected when these outputs dif-
fered. The results showed that:

l Most detected faults are detected in the first repetition. Subse-
quent repetitions do not appreciably increase the proportion of de-
tected faults.

o A large proportion of faults remained undetected after as many as 8
repetitions of the program, e.g., 60% at the gate-level.

l Component-level faults are easier to detect than gate-level faults.
For example, after 8 repetitions, the proportion of undetected faults
were

GATE-LEVEL COMPONENT-LEVEL

61.7% 35.5%
58.2% 28%
59.5% 32.3%

for the program FETSTO, FIB and ADDSUB, respectively.

o The results of the study corroborate the findings of the pilot study of
(ref. 1). This was surprising considering that the pilot study used an
emulation of a very simple processor. As an illustration, the pilot
study indicated that, after 8 repetitions, the proportion of undetected
faults were

64.4%
53.7%
44.9%

for FETSTO, FIB and ADDSUB, respectively.

m The Urn Model, for forecasting fau1.t latency, produced distributions that
were in close agreement with the empirical distributions. However, the
rationale for the model should be analyzed further.

l A self-test program of 2000 executable instructions was expressly de-
signed for the study. The designer was given the single requirement that
fault coverage should be at least 95%. The resultant test consisted of
241 separate subtests for the purpose of exercising the entire instruc-
tion set of the BDX-930.

10

The results indicated that there is a significant difference in coverage
of gate-level versus component-level faults. For example,

gate-level coverage = 86.5%

component-level coverage = 97.9%

o Only 48% of all detected faults were detected by a subtest. The remain-
ing detected faults were detected because the first subtest was not
computed.

o Most of the subtests were redundant, i.e.,only 46 of 241 subtest actually
detected a fault.

l 62% of all detected faults were detected by the first 23 subtests.

o A large proportion of "don't care" (i.e., indistinguishable) faults were
injected. These proved to be exceedingly difficult to identify.

l The micromemory prom contained the largest proportion of undetected
faults.

o The emulation can easily accommodate the SIFT system but with a 7-fold increase
in run time.

11

3.0 FAULT MODELLING AND SELECTION

3.1 Fault Model

At the present time there is little or no data available regarding either
the mode or frequency of failures of MS1 or LSI devices. Despite this defi-
ciency of data, failure modes and effects analyses are regularly performed for
avionics and flight control systems (a typical analysis is described in Sec-
tion 11). The conventional approach is to assume a set of failure modes for
each device. These are usuallly restricted to faults at single pins although,
occasionally, multiple faults may be considered. In most cases the failure rate
of a device is assumed to be equally distributed over the pins or over the set
of postulated failure modes. Except for special devices, faults are assumed to
be static, being either S-a-O or S-a-l.

The point to be made here is that failure modes and their rate of occur-
rence are necessarily conjectural and the credibility of the present study
suffers no less from this deficiency of data then the conventional analysis.
The authors emphasize that the emulation approach does not solve this problem.

In the present study the following assumptions are made regarding failure
modes:

l Every device can be represented, from the standpoint of performance and
failure modes, by the manufacturer-supplied, gate-level equivalent cir-
cuit.

l Every fault can be represented as either a S-a-O or S-a-l fault at a gate
node.

l The failure rate of the device is equally distributed over the gates of
the equivalent circuit.

o The failure rate of a gate is equally d
gate.

istributed over the nodes of the

l S-a-O and S-a-l faults are equally like

e Memory faults are exclusively faults of

o A memory fault is the complement of its

1Y.

single bits.

non-faulted state.

Faults are injected into all devices except the main memory. In the case
of the microprogram memory, which is emulated at the functional level, faults
are injected into the memory cells where they remain active for the duration of
the test. Faults are injected at an input or output gate node, and also remain
active for the duration of the test. When a fault is injected at an output node
it is allowed to propagate to all nodes and devices that are physically con-
nected to the failed node. When a fault is injected at an input node, it does
not propagate back to the driving node. This strategy provides a wider variety
of failure modes than would otherwise be possible if propagation were allowed.
The fault model, although conjectural at the present time, can be updated as
fault data becomes available. The proposed model provides a simple, automatic
and consistent method of generating faults. The resultant fault set includes a
rich assortment of static and dynamic (i.e., data-dependent) faults.

12

3.2 Method of Selecting Faults

The method of selecting faults is implicit in the fault model. Explicitly,

l Each device is assigned a failure rate.

l The failure rate is equally distributed over the gates of the gate-level
representation.

l The failure rate of each gate is equally distributed over the nodes of
the gate.

l The failure rate of each node is equally distributed over S-a-O and S-a-l
faults.

l As a result of this procedure, each S-a-O and S-a-l fault is assigned
a probability of occurrence equal to the prescribed failure rate. The
resultant fault set is then randomly sampled with each fault weighted by
its probability of occurrence. It is noted that, according to this pro-
cedure, faults in devices with high failure rates will be selected more
frequently than faults in devices with lower failure rates.

The above procedure does not distinguish between gate-level and component
(i.e., pin)-level faults except by probability of occurrence; the method auto-
matically assigns failure rates to pins. However, a different selection proce-
dure was employed for component-level faults. For these faults it was assumed
that:

l The failure rate of each device'is equally distributed over the pins.

While this assumption violates the prescribed fault model it is consistent
with the conventional method of estimating fault detection coverage by simulat-
ing faults in actual hardware. As a consequence, all component-level detection
estimates obtained in the study are estimates that would be obtained by propo-
nents of this approach.

13

emp
ing

loying two conventional techniques of failure detection: comparison-monitor-
and self-test.

4.0 DESCRIPTION OF EXPERIMENTS

4.1 Definition of Failure Detection

Tn the present study, fault coverage and latency estimates are obtained by

In comparison-monitoring a set of computed variables is compared with a
corresponding set computed in another processor. If it is arranged that both
processors operate on identical inputs and are closely synchronized, then any
difference in a computed variable signifies that one of the processors has
failed. In practice each processor executes an algorithm which compares the
appropriate variables and signals a discrepancy when such exists. In the pre-
sent study this algorithm was omitted; a fault is considered to be detected if
a difference between corresponding variables exists irrespective of the ability
of either processor to recognize the difference or signal the discrepancy. Thus,
the fault coverage obtained from the study is somewhat more optimistic than
would be obtained in practice.

In self-test, on the other hand, each component of the processor is exer-
cised by a set of computations designed specifically to test that component.
The results of each computational set are compared with pre-stored values and
any difference signifies that the fault was detected. In practice, and in the
study, the processor increments a register after the successful completion of
each test and before proceeding to the next test. If the test is not successful
the program exits. After an interval of time equal to the maximum time to com-
plete the program, the contents of the counter are decoded. If the value exact-
ly equals that total number of tests, the fault was not detected. Otherwise the
fault was detected.

It is emphasized that "failure detection", as it is used in the present
study, means almost exactly what it means in an actual airborne avionic system.
This is in marked contrast to the commonly employed alternate approach of
assuming that a failure is detected whenever the effect to the failure reaches
an accessible bus or reqister, even though the program may not be interrogating
these devices at that time.

In the following paragraphs a description is given of the actual computa-
tions involved in the experiment with particular emphasis on the explicit defin-
ition of "failure detection" in each instance.

4.2 Definition of Failure Detection Coverage

We assume that a test procedure is given for detecting failures of a compo-
nent, C. Each failure mode of C will require a non-zero time for detection. By
considering all failures of C and all combinations of inputs and internal states
of C, we obtain in principle, if not in practice, a probability density function
for time-to-detect, which is measured from the onset of the failure to the time
of detection.

14

Denoting this density by pdf (.c) where

t = time-to-detect = latency time

we define

Test Coverage

1) 1 - a(T) = pdf(X)dX

= probability of detecting a failure of C in

the interval 0 2 t 5 T.

Observe that, according to this definition, test coverage is a function of
latency time. The definition can be extended to all devices of the computer as
follows:

Subdivide the computer into mutually exclusive components Cl, C2,...,Ck

with failure rates A,, X2,...,Xk, and testcoverages 1 - a,(r), 1 - a2(-c) ,...,

l- a,(T), respectively.

Set Pdfi ('~1 = probability density for time-to-detect failures of

Ci, i = 1, Z,...,k.

Then the pdf for all failures of the computer is

i=k

2) pdf(T) = C + Pdfi (T)
i=l

where A= x1 + x2 + + Xk.

Test coverage of the whole computer is then

i=k

3) 1 - a (T) = C xi (1
x - a it.‘) 1.

i=l

The method of selecting faults, described in Section 3, is consistent
with this definition,

15

From (3) we obtain

i=k

.4) a(r) = C
xi

-I- a,(T) , as expected.

i=l

One of the objectives of the present study is to obtain estimates of the
probability density function, pdf (T).
tion 8.

These estimates are presented in Sec-

4.3 Indistinguishable Faults and Effects on Coverage

During the development of the emulator it became apparent that a signifi-
cant proportion of components had no affect whatsoever on the digital process.
For the most part, these components are associated with unused pins, e.g., a
complementary output of a flip-flop. However, there are other components whose
lack of effect are not as obvious as, for example, a component that only affects
the process when it is faulted. Certain micromemory bits are in this category.
In order to distinguish between these categories of faults we are lead to the
following informal definitions:

A fault that has no affect on the computational process is

indistinquishable. All other faults are distinguishable.

We note that a distinguishable fault has the property that there exists a
software program the output of which differs from that of the same program exe-
cuted by an identical but non-faulted processor.

Effects on Coveraqe

The presence of indistinguishable faults can lead to erroneous and mis-
leading estimates of coverage. In theory, indistinguishable faults should be
disqualified from the emulation or from the fault selection process. This is
consistent with the definition of coverage which implicitly assumes that
faults are distinguishable. Unfortunately, in order to disqualify indistin-
guishable faults from the emulation or from the fault selection process they
must be first identified and this is a non-trivial task because of the large
number of possible faults. The approach taken in this study was to select
faults irrespective of their distinguishability properties and analyze only
those faults that were undetected by Self-Test. The proportion of indistin-
guishable faults from this set was then used as an estimate over all faults.

16

We now indfcate, briefly, how indistinguishable faults affect coverage.

If

and

then

and

5)

61

Y = proportion of components yielding indistinguishable faults

1 -a = coverage of distinguishable faults

1 -a = desfred coverage

(1 - a) (1-y) = coverage when indistinguishable faults are

counted as undetected. We note, incidentally

that

(1 - a) (1 -Y)+Y = coverage when indistinguishable faults

are counted as detected.

The estimate of (5) will be obtained if indistinguishable faults are not
disqualified. Then, coverage estimates will be in error by the factor, l-y.

In the more general case it may be more convenient to estimate the propor-
tion of indistinguishable faults by partition since the affect on coverage is
a function of the relative failure rate of the partition.

Let 5 = failure rate of Partition #i, i = 1, 2, 6.

yi = proportion of indistinguishable faults in Partition #i.

1 t= -a coverage of distinguishable faults in Partition +i.

x = xl + h2 + + x6 = total failure rate.

From the previous section, if all faults are distinguishable then coverage
is given by

6

7) l-a= 1 + (1-ai)

i=l

17

If, however, indistinguishable faults are counted as undetected then the

coverage actually obtained is

6

8) 1 -a= C -k’ (1 -ai) (I -vi).

i=l

We note that, if indistinguishable faults are disqualified, the true

coverage is

6

9) l-a- C ‘i (l - a i) (1 - Y 1)

i=l

6

c (l-yi) Xi

i=l

Prom (8) it can be seen that the required accuracy of an estimate of yi

depends upon the relative failure rate, Xi/X. If Xi is sufficiently small

then the effect of an inaccurate estimate of yi is negligible.

4.4 Objectives of Experiments

Most airborne systems, present and projected, employ conparison-monitoring,
self-test or a combination of both to achieve the requisite detection and isola-
tion capability. One of the problems of fault detection, by either method, is
that a fault may not manifest itself at either a comparison-monitored variable or
at an accessible output of self-test until the faulted component is suitably
exercised. As a consequence, faults can remain latent for long periods of time.
This is the significance of latency time, T, in the definition of test coverage
of Section 4.2.

One of the objectives of the experiments is to estimate T for a variety of
computations including self-test. The Phase I experiments consist of six soft-
ware programs ranging from a simple fetch and store to a complicated multi-in-
struction, linear convergence algorithm. Using comparison-monitoring the prob-
ability distribution of T will be estimated for each of the six programs and the
interdependence of these distributions and the number and type of instructions
will be ascertained.

The Phase II experiments utilize a typical avionics system self-test program
which consists of 241 separate, sequential tests. The program consists of 2000
executed instructions which requires an execution time of 3 milliseconds on the
BDX-930.

18

4

In practice, the only measure of failure detection coverage when applied to a
self-test program is whether or not the fault is detected before the normal com-
pletion of the self-test program. In particular, latency time has little or no
significance in this context. Nevertheless, an equivalent latency time was es-
timated for self-test by tabulating the number of the test that actually detec-
ted the fault, the tests being executed in the order 1, 2, 241.

A secondary objective of the experiment was to corroborate the results of
(ref. 1) which utilized the same Phase I program executed on an idealized, "very
simple processor!

4.5 Phase I Experiments

This phase consisted of six programs each of which was coded in the assembly
language of the BDX-930.
performed in (ref.

For the purpose of comparison with the experiments
1) the instructions of the BDX-930 were primarily restricted

to the following set:

LOAD

STORE

ADD

SUBTRACT

BRANCH

In the following descriptions only the set of computations labelled "com-
pute" were performed by the target BDX-930 CPU; all other computations, selec-
tions, comparisons, etc. were performed by the emulation host computer Executive.
Needless to say, there were no failures in these latter computations.

When the non-failed processor completed a computation* and before the start
of the next computation the Executive recomputed all initializing variables and
stored them in the appropriate locations of the scratchpad memory.

In the parallel mode of operation, when 36 computers are simultaneously
being emulated, the initializing variables are stored simultaniously in the 36
copies of the scratchpad memories.

* In the parallel mode of operation one of the emulated processors is non-fault-
ed and, as a consequence, the end of its computation cycle can be determined
from its program counter.

19

4.5.1 Fibonacci (FIB)

a. Procedure

TO) Select integers A, B, at random from the interval

-zg + 12 x 2 zg -1.

For each fault:

Tl) Preset the program counter to the address of the first instruction.

T2) Store A, B in successive locations of memory.

T3) Compute and store in successive locations of memory

3 =A+B

s2
=B+S,

s3
= s, + s2

.

.

'8 = '6 + '7.

T4) When the non-failed processor completes its last instruction conparc
S,, S2, S8' term by term, in both the non-failed and failed pro-

cessors. If Sk is the first variable to miscompare set L = K

(L = latency period). If all Sk compare (undetected failure),

set L = 0.

b. Instruction Set

During a typical computation the following instructions were executed:

INSTRUCTION FREQUENCY

LOAD 2

STORE 1

ADD 3

BRANCH 4

CLEAR 1

20

-

4.5.2 Fetch and Store (FETSTO)

a. Procedure

TO) Select 8 integers, Ak , at random from the interval

+, jAkd5-l. =
For each fault:

Tl) Preset the program counter to the address of the first

instruction.

T2) Store the Ak in SUCCeSSiVe locations of memory.

T3) Compute:

Fetch the Ak and store in successive locations of

memory.

T4) If the re-stored value of AK is denoted by Sk then, when

the non-failed processor completes its last instruction

compare S,, S2, '8' in both the non-failed and failed

processors. If Sk is the first variable to miscompare set

L = K. If all Sk compare set L = 0.

b. Instruction Set

During a typical computation the following instructions were

executed:

INSTRUCTION FREQUENCY

LOAD 1

STORE 2

SUBTRACT 1

BRANCH 2

21

4.5.3 Add and Subtract (ADDSUB)

a. Procedure

TO) Select 8 integers, Ak, at random from the interval

-2'4 +1<Ak<214-1. f =

For each fault:

Tl) Preset the program counter to the address of the first instruction.

T2) Store the Ak in successive locations of memory.

T3) Compute and store in successive locations of memory:

sl = A, - A2

s2 = A, + A2

S3 = A3 - A4

S4 = A3 + A4

s5 = A5 - A6

'6 = A5 + A6

s7 = A7 - A8

'8 = A7 + A8.

T4) When the non-failed processor completes its last instruction compare
S,, S2, S8, term by term, in both the non-failed and failed

processors. If Sk is the first variable to miscompare set L = K.

If all Sk compare set L = 0.

22

b. Instruction Set

During a typical computation the following instructions were executed.

INSTRUCTION FREQUENCY

LOAD 2

STORE 2

ADD 2

SUBTRACT 1

BRANCH 2

TRANSFER 2

4.5.4 Search and Compute (SERCOM)

a. Procedure

TO) Select 8 sets of integers, (Ak, Bk, C,), at random, each component

from the interval

For each fault:

Tl) Preset the program counter to the address of the first instruction.

T2) Store the (Ak, Bk, Ck) in successive locations of memory.

T3) Compute and store in successive locations of memory

'lk = Bk + Ck

'Pk = Bk 3

if Bk 2 Ak

'lk = Bk + ck

S2k = Bk - ck 3

if Ak < Bk and ck <= Ak

'lk = Bk - 'k(*,)

'Pk = Bk x Ck
3

if Ak < Bk and Ak < ck .

*1 Multiplication is performed by successive addition.

23

(T4) When the non-failed processor completes its last instruction com-
pare Slk, S2K term by term, in both the non-failed and failed

processors.(*2) If Slk or Sek is the first variable to miscompare

set L = K. If all Slk, Spk compare set L = 0.

b. Instruction Set

During a typical computation the following instructions were executed:

INSTRUCTION FREQUENCY

LOAD 6

STORE 6

ADD 17

SUBTRACT 1

BRANCH 24

TRANSFER 5

4.5.5 Linear Convergence (LINCON)

a. Procedure

TO) Select the following integers from the indicated interva 1s:

MO ,
-8 2 M. 6 8

yO
-2’4 + 1 6 y. = < 214 - 1

9

X,' X2’ , '8 , 0 2 Xk <= 2" .

Assume that X1 < X2 < < X8.

For each fault:

Tl) Preset the program counter to the address of the first instruction.

T2) Store MO, Yo, X1, X2, X8, in successive locations of memory.

*2 Although this program was written to utilize 8 sets of integers, this
experiment was performed using only 1 set.

24

-

T3)

T4)

Compute MK, YK, for K = 1, 2, 8 as specified in the following flow

fiow diagram of figure 1, and store in successive locations of memory.
Note again, that all multiplications are performed as successive additions.

When the non-failed processor completes its last instruction compare
M,, Y,, M8’ y8, term by term, in both the non-failed and failed

processors. If Mk or Yk is the first variable to miscompare set L=KT.

If all Mk, Yk compare set L=O.

b. Instruction Set

During a typical computation the following instructions were executed:

INSTRUCTION FREQUENCY

LOAD 38

STORE 38

ADD 16

SUBTRACT 4

BRANCH 39

TRANSFER 11

CLEAR 1

4.5.6 Quadratic (QUAD)

a. Procedure

TO) Select 8 sets of integers, (AK, BK, CK,
cated intervals:

X,), at random from the indi-

Ak’ By Ck, = o<xs215-l

For each fault:

'k 3 -10 2 Xk d 10

Tl) Preset the program counter to the address of the first instruction.

T2) Store the (Ak, Bk, Ck, Xk) in successive locations of memory.

* Although this program was written to utilize 8 values of X, this experiment
was performed using only Xl.

25

T3) Compute and store in successive locations of memory (overflows are
ignored):

Sk = (A$,& - 8,& - &k*”

K=l,2,....,8 (*a

T4) When the non-failed processor conplctes its last instruction, compare
S,, S2, S8, term by term, in both the non-failed and failed pro-

cessors. If Sk is the first variable to miscompare set L = K. If all

Sk compare set L = 0

b. Instruction Set

During a typical computation the following instructions were executed:

INSTRUCTION FREQUENCY

LOAD 7

STORE 5

ADD 30

SUBTRACT 1

BRANCH 38

TRANSFER 6

4.6 Phase II Experiments

This phase consists of injecting faults and executing a typical avionic
flight control system self-test program to determine failure detection coverage.
The self-test program was written expressly for this study.

A flight control system may employ one or more self-test programs and in a
variety of ways. For example, as a background program, in pre-flight test, in
maintenance test or on-line to isolate a failed computer. Whi1.e the present
study does not preclude any of these, the on-line application is the most inter-
resting and critical. For orientation purposes an on-line application of self-
test will be briefly described. The control system consists of three, identical

*1 Multiplication is performed by successive addition.
*2 Although this program was written to utilize 8 sets of integers, this

experiment was performed using only 4 sets.

26

.. - ..--.-. ..- ..-. --.-...-..--...--. . .._~

digital computers each driving a command port of a triplex, mechanically voted
actuator. A first failure is detected via comparison-monitoring and the offend-
ing computer is desengaged. The second computer failure is also detected via
comparison-monitoring and, upon detection, each of the two computers executes a
self- test program designed to detect a specified proportion of failures in a
specified period of time. The inability to successfully complete the self-test
program or an explicit detection of the failure during this period of time
causes the faulted computer to be disengaged from the actuator - leaving the
remaining computer in control.
CPU.

The disengagement logic is independent of the
Essentially, disengage is "armed" after the first failure. Either of the

remaining computers can, thereafter, call for an interrupt to self-test if it
detects a miscomparison. This interrupt occurs in both computers and sets the
program counters to the first instruction of the self-test and activates a one-
shot of duration slightly in excess of the time it takes for a non-failed compu-
ter to complete the self-test program. At any time until the one-shot times -
out the self - test program may set a discrete output word whose value indicates
whether or not the failure was detected. This discrete word is decoded in hard-
ware.

If the value corresponds to a predetermined value (which does not exist in
memory but must be computed) then the computer successfully completed self-test
and, of course, did not find the fault. If the value is negative the computer
is immediately disengaged. If: however, the word was not changed at all, having
been initialized to zero at the start of the self-test, the computer is disen-
gaged after the time-out if and only if the other computer successfully passed
its self-test.

Before describing the fault injection procedure a brief overview of the
self-test program will be given.

The self-test program provides the option of selecting any one of 14 test
sequences, depending upon the coverage desired. The difference between these
test sequences is in the number of input and internal state combinations
employed in testing an instruction. A test procedure is specified by setting
N, in location, ARG, to an integer value between 1 and 14, the complexity and
length of the tests increasing with increasing N. In the present study N = 1.

The resultant test procedure consisted of 241 separate tests.

After a successful completion of a test the program increments register A,4

(Al4
is initialized to 0) and proceeds to the next test in the sequence. If,

however, a failure is detected the program skips the remaining tests and trans-
fers the contents of Al4 to a designated memory location whose contents, ANSW,
became the measure of failure-detection. If the program successfully completed
all tests then ANSW = 241.

27

In the Phase II experiments a fault was defined as detected if, after a
complete execution of the self-test program by the non-failed processor,
ANSW f241 in the faulted processor. Observe that, according to this definition,
a fault is detected if the faulted processor jumps out of the program, gets
hung-up in an infinite loop or executes a single extra instruction before trans-

*ferring the contents of A14.

4.6.1 Self-Test

For each fault:

Tl) Preset the program counter to the address of the first instruction
(i.e., to CPUT) and initialize the stack pointer (i.e., register A

to the starting location of the scratchpad memory.

T2) Compute (i.e., execute self-test).

T3) When the processor completes the equivalent number of microcycles,

15

corresponding to a complete execution of the self-test program by the
non-failed processor, halt. The fault is detected if and only if
ANSW f241.

28

YES

I

r YES

I YES

v

‘ktl’ MkX*kt,+Yk Yktl=WkX*kt,tY X* k’ ktl

I I I

rt

Mktl=“k Mktl - hlk-1

I

FIGURE 1 FLOW DIAGRAM FOR LINCON

In this sect
with a minimum of
the next section.

isely and
given in

As indicated

5.0 RESULTS OF EXPERIMENTS

ion the data from the experiments is presented cone
commentary. A detailed analysis of the results is

5.1 Distribution of Faults

previously the selection of faults was random with each device
weighted in proportion to its failure rate. S-a-O and S-a-l faults were equally
weighted. The failure rates associated with each partition are given in Table 1.
Initially, 1,000 gate-level and 400 component-level faults were randomly
selected. Later, in order to reduce the cost of the runs it was necessary to
reduce the number of faults actually injected. The number of faults finally
selected for each experiment are given in Table 2. A detailed breakdown of
the number of faults injected into each partition are given in Tables 3 & 4
for the Phase I and Phase II experiments, respectively. The numbers in paren-
theses are the number of faults that should have been selected if the sampling
had been stratified over the partitions. Except for the Phase II component-
level faults the indicated quantities include indistinguishable faults.

The same set of 400 component-level faults was used in all Phase I experi-
ents. From these 400, 200 were randomly selected and used in Phase II (i.e.,
SELF-TEST). The same 1,000 gate-level faults were used in FETSTO AND SERCOM.
From these 1,000, 600 were randomly selected and used in ADDSUB, FIB, QUAD and
LINCON. From these 600, 300 were randomly selected and used in Phase II.

5.2 Phase I Experiments

5.2.1 FETSTO Experiment

After each injected fault FETSTO was executed for 8 repetitions. The re-
sultant histograms of detected faults versus repetitions to detection are shown
in Figures 2a through 2i. Tabular results of the raw data are given in
Table 5.

Fiqures 2a, 2b, Summarized

(Combined, S-a-l and S-a-O gateilevel faults)

o 61.7% undetected after 8 repetitions.

0 29.9% detected in 1st repetition.

0 8.4% detected in repetitions 2 through 8.

o 59.8% of S-a-l faults undetected.

o 63.3% of S-a-O faults undetected.

30

Figures 2c, 2d, 2e, Summarized

j

(Combined gate-level faults by partition)

o 98% of faults in Partition #5 undetected.

o 96.3% of faults in Partition #6 undetected.

We note that Partition #5 contains the micromemory.

Figures 2f, 29, Summarized

(Combined, S-a-l and S-a-O component-level faults)

Q 35% undetected after 8 repetitions (compared with 61.7% for
gate-level faults).

0 51.3% detected in 1st repetition,

o 13.2% detected in repetitions 2 through 8.

0 31% of S-a-l faults undetected.

0 40.1% of S-a-O faults undetected.

Figures 2h, 2i, Summarized

(Combined component-level faults by partition)

o Partitions #5 and #6 did not allow for component-level faults. Pin
faults (i.e,., component-level) were injected at adjacent partitions.

5.2.2 ADDSUB Experiment

After each injected fault ADDSUB was executed for 8 repetitions. The re-
sultant histograms of detected faults versus repetitions to detection are shown
Figures 3a through 3i. Tabular results of the raw data are given in Table 6.

Fiqures 3a, 3b, Summarized

(Combined, S-a-l and S-a-O gate-level faults)

o 59.63 undetected after 8 repetitions.

0 33.5% detected in 1st repetition.

0 7.0% detected in repetitions 2 through 8.

0 54.% of S-a-l faults undetected.

o 64.2% of S-a-O faults undetected.

Figures 3c, 3d, 3e, Summarized.

(Combined gate-level faults by partition)

0 99% of faults in Partition #5 undetected.

0 100% of faults in Partition #6 undetected.

31

Fiqures 3f, 39, Summarized

(Combined, S-a-l and S-a-O component-level faults)

o 32.3% undetected after 8 repetitions (compared with 59.5% for gate-
level faults).

0 57% detected in 1st repetition.

0 10.7% detected in repetitions 2 through 8

o 27.6% of S-a-l faults undetected.

0 37.1% of S-a-O faults undetected.

Fiqures 3h, 3i, Summarized

(Combined component-level faults by partition)

o Partitions #5 and #6 did not allow for component-level faults. Pin
faults were injected at adjacent partitions.

5.2.3 FIB Experiment

After each injected fault FIB was executed for 8 repetitions. The result-
ant histograms of detected faults versus repetitions to detection are shown in
Figures 4a through 4i. Tabular results of the raw data are given in
Table 7.

Figures 4a, 4b, Summarized

(Combined, S-a-l and S-a-O gate-level faults)

o 58.2% undetected after 8 repetitions.

0 35% detected in 1st repetition.

0 6.8% detected in repetitions 2 through 8

0 54.3% of S-a-l faults undetected.

o 62.2% of S-a-O faults undetected.

Figures 4c, 4d, 4e, Summarized

(Combined gate-level faults by partition)

o 98% of faults in Partition #5 undetected.

0 100% of faults in Partition #6 undetected.

Figures 4f, 49, Summarized

(Combined, S-a-l and S-a-O component-level faults)

o 28% undetected after 8 repetitions (compared with 58.2% for
gate-level faults).

o 61.3% detected in 1st repetition.

32

0 10.7% detected in repetitions 2 through 8.

o 22.7% of S-a-l faults undetected.

0 33.5% of S-a-O faults undetected.

Figures 4h, 4i, Summarized

(Combined component-level faults by partition) ,

o Partitions #5 and #6 did not allow for component-level faults. Pin
faults were injected at adjacent partitions.

5.2.4 QUAD Experiment

After each injected fault QUAD was executed for 4 repetitions. The resul-
tant histograms of detected faults versus repetitions to detection are shown in
Figures 5a through 5i. Tabular results of the raw data are given in
Table 8.

Figures 5a, 5b, Summarized

(Combined, S-a-l and S-a-O gate-level faults)

0 53.3% undetected after 4 repetitions.

o 43.2% detected in 1st repetition.

0 3.5% detected in repetitions 2, 3 and 4.

0 49.3% of S-a-l faults undetected.

0 57.4% of S-a-O faults undetected.

For comparison purposes it is desirable to extrapolate the results of QUAD
to 8 repetitions. To obtain a rough extrapolation we note that the average
proportion of detected faults in repetitions 2 through 8 in the FETSTO, ADDSUB
and FIB experiment is 7.4%. Using this estimate we obtain:

0 49.4% undetected after 8 repetitions.

Figures 5c, 5d, 5e, Summarized

(Combined gate-level faults by partition)

0 97.1% of faults in Partition #5 undetected after 4 repetitions.

0 100% of faults in Partition #6 undetected after 4 repetitions.

Figures 5f, 59, Summarized

(Combined, S-a-l and S-a-O component-level faults)

o 23.5% undetected after 4 repetitions (compared with 53.3% for gate-
level faults).

0 71.8% detected in 1st repetition

33

0 4.7% detected in repetitions 2, 3 and 4.

0 20.2% of S-a-l faults undetected.

o 26.9% of S-a-O faults undetected.

Again,to extrapolate the results of QUAD to 8 repetitions we note that the
average proportion of detected component-level faults in repetitions 2 through 8
in the FETSTO, ADDSUB and FIB experiment is 11.5%. Using this estimate we
obtain:

o 16.7% undetected after 8 repetitions.

Fiqures 5h, 5i, Summarized

(Combined component-level faults by partition) After 4 repetitions,

o 28.6% undetected in Partition #l.

0 10.2% undetected in Partition #2.

o 43.6% undetected in Partition #3.

o 18.5% undetected in Partition #4.

5.2.5 SERCOM Experiment

After each injected fault'SERCOM was executed for a single repetition. The
resultant histograms of detected faults versus repetitions to detection are
shown in Figures 6a through 6i. Tabular results of the raw data are given
in Table 9.

Figures 6a, 6b, Summarized

(Combined, S-a-l and S-a-O gate-level faults)

o 60.5% undetected after a single repetition.

0 39.5% detected in the 1st repetition.

0 57.3% of S-a-l faults undetected.

o 63.6% of S-a-O faults undetected.

As in QUAD, extrapolating to 8 repetitions, we obtain:

0 53.1% undetected after 8 repetitions.

Figures 6c, 6d, 6e, Summarized

(Combined gate-level faults by partition)

o 98% of faults in Partition #5 undetected.

0 100% of faults in Partition #6 undetected.

34

Fiqures 6f, 69, Summarized

(Combined, S-a-l and S-a-O component-level faults)

0 35.2% undetected after a single repetition (compared with 60.5% for
gate-level faults).

o 64.8% detected in 1st repetition.

o 27.6% of S-a-l faults undetected.

0 43.1% of S-a-O faults undetected.

Extrapolating the results to 8 repetitions we obtain:

o 23.8% undetected after 8 repetitions.

Figures 6h, 6i, Summarized

(Combined component-level faults by partition). After a single repetition,

o 24.4% undetected in Partition #l.

o 33.6% undetected in Partition #2

o 46.8% undetected in Partition #3.

0 35.9% undetected in Partition #4.

5.2.6 LINCON Experiment

After each injected fault LINCON was executed for a single repetition. The
resultant histograms of detected faults versus repetitions to detection are
shown in Figures 7a through 7i. Tabular results of the raw data are given
in Table 10.

Fiqures 7a, 7b, Summarized

(Combined, S-a-l and S-a-O gate-level faults)

o 48.3% undetected after a single repetition.

0 51.7% detected in the 1st repetition.

o 46.7% of Ssa-1 faults undetected.

0 50% of S-a-O faults undetected.

As is SERCOM, extrapolating to 8 repetitions, we obtain,

0 40.9% undetected after 8 repetitions.

Figures 7c, 7d, 7e, Summarized

(Combined, S-a-l and S-a-O component-level faults)

o 96.2% of faults in Partition #5 undetected.

0 100% of faults in Partition #6 undetected.

35

I- -

Fiqures 7f, 79, Summarized

(Combined, S-a-l and S-a-O component-level faults)

o 23.5% undetected after a single repetition (compared with 48.3% for
gate-level faults).

o 76.5% detected in 1st repetition.

0 21.2% of S-a-l faults undetected.

0 25.9% of S-a-O faults undetected.

Extrapolating the results to 8 repetitions we obtain,

0 12% undetected after 8 repetitions.

Fiqures 7h, 7i, Summarized

(Combined component-level faults by partition)

o 20.8% undetected in Partition #l.

0 10.9% undetected in Partition #2.

0 41.5% undetected in Partition #3.

o 26.1% undetected in Partition #4.
The Phase I results are concisely summarized in Table 11.

5.3 Phase II Experiments

5.3.1 Indistinguishable Fault Estirlates

As indicated in Section 5.1, 300 gate-level faults and 200 component-level
faults were injected in the Phase II experiments. In order to obtain an esti-
mate of the proportion of indistinguishable faults each resultant, undetected
fault was analyzed and those faults which were obviously indistinguishable were
disqualified. At the gate-level, 71 out of 300 faults were identified as in-
distinguishable. Thus, the estimated proportion of components yielding indis-
tinguishable are:

71
y*=-=

300 0.2366 at the gate-level

11 and y*=-=

200 .055 at the component-level

Since indistinguishable faults were not disqualified in the Phase I exper-
iments all coverage estimates of Phase I should be divided by the appropriate
1 - y* factor, as prescribed in Section 10.

5.3.2 Self-Test Coverage

Having disqualified 71 indistinguishable faults 229 faults were effectively
injected at the gate-level and 189 at the component-level. The resultant raw
data is given in Table 12 by partitions.

36

As indicated previously, after each injected fault the self-test program
was executed. Faults were generally detected either because an explicit test
detected the fault or the fault caused a jump out of the program. These latter
faults are denoted in Table 12 by "wild branches".

5.3.3 Gate-Level Faults

From Table 19 we observe,

o 198 out of 229 combined faults were detected for a coverage of 86.46%.

o 100 out of 114 S-a-l faults were detected for a coverage of 87.72%.

o 98 out of 115 S-a-O faults were detected for a coverage of 85.22%.

o 9 out of 17 faults in Partition #5 were detected for a coverage of 52.94%.

o 5 out of 8 faults in Partition #6 were detected for a coverage of 62.5%.

o If faults in Partitions #5 and #6 are disqualified then 184 out of 204
faults were detected for a coverage of 90.2%.

As an indication of fault latency the test that actually caused detection
of the fault was recorded. It is recalled-that arithmetic register Al4 is in-

cremented after the successful completion of each of the 241 tests that comprise
Self-Test. If a test is unsuccessful or if all tests are successful the
contents of A14, are transferred to a designated memory location, ANSW. The

fault is considered detected if, after a complete execution of Self-Test by the
non-failed processor, the contents of ANSW f241.

Occasionally a fault can result in an incorrect incrementation of Al4 or

prevent the transfer to ANSW. In the former case the test cannot be identified
correctly. In the latter case the contents of ANSW remains at its initial value
of zero and, as a consequence, does not indicate the correct test number either.

The procedure used to identify the test was to set:

(Test #)- 1 = (ANSW) when (Arrsw) + 0.

(Test #)- 1 = (17,~) when (ANSW) = 0.

This results in the correct identification of the test, in most cases.

Table 13 gives the number of gate-level and component-level faults
det.ected. When (Test#)- 1 = 0 the effect is referred to, in Table 12, as a
"wild branch" since, in most cases, the fault caused a jump out of the program.

From Table 13 we observe:.

o 103 out of the 198 faults detected resulted in wild branches, i.e., 52%.

o 95 faults were detected by an explicit test (even though it was not al-
ways possible to identify the test).

37

o Out of the 241 possible tests, at most 46 actually resulted in a detec-
tion, i.e., most of the tests were, effectively, redundant.

5.3.4 Component-Level Faults

From Tables 12 and 13 we observe:

o 185 out of 189 combined faults were detected for a coverage of 97.9%.

o 97 out of 100 S-a-l faults were detected for a coverage of 97%.

o 88 out of 89 S-a-O faults were detected for a coverage of 98.9%.

o 106 out of 189 faults detected resulted in wild branches, i.e., 56%.

o 79 faults were detected by an explicit test (even though it was not al-
ways possible to identify the test).

o Out of 241 possible tests, at most 44 actually resulted in a detection.

Table 14 shows the self
partitions.

5

From the Phase I exper i
for the three programs

-test coverage at the gate and component-levels by

4 URN Model Parameters

ments the parameters of the Urn Model were estimated

FETSTO

ADDSUB

FIB

for combined, S-a-l and S-a-O gate-level and component-level faults.

Table 15

This table gives the exact and approximate maximum likelihood estimates of
a, P and PO, as defined in Section 10. Also shown are the resultant, computed,

Urn Model distribution of terms of the occupancy probabilities of cells 1,
2, , 8. These correspond to the probabilities Xi, Yi or Zi for S-a-O, S-a-l

and combined faults, respectively. In keeping with our subsequent notation, the
occupancy probability of cell 9 is actually the probability that the fault is
undetected in the previous 8 repetitions. As a comparison, the corresponding
empirical distributions are also given. These were obtained directly from the
latency distributions of Section 5.2.

Referring to the table, we note that the approximate estimates are accu-
rate to two decimal places, in most cases.

38

Figures 8, 9, 10

The resultant, computed Urn Model distributions are shown graphically in
these figures using, in all cases, the exact estimators. The distributions
are superimposed on the corresponding empirical distributions of Section 5.2.

Table 16

This table gives the elements of the error covariance matrix for the Urn
Model estimates. The matrix was obtained using the exact maximum likelihood
estimates.

Table 17

This table gives the elements of the inverse error covariance matrix of
Table 16.

Table 18

For completeness, the intermediate parameters that were used to obtain the
estimates of a, P and PO are given in this table. The intermediate parameters

are m ,, m2, -.-., mg, A, B, C, D as defined in Section 10. We note that the sym-

bols ml referred to S-a-O faults previously but, in the context of Table 18,

they refer to S-a-O, S-a-l or combined faults, as the case may be.

5.5 Accuracy and Confidence of Results

5.5.1 Phase I Results

The accuracy of the Phase I results will be illustrated by the combined,
gate-level FETSTO experiments. Using the marginal distributions for latency
cells #1 and #9 and using ('24) of Sectionl0.6 gives, for the errors at the 95%
confidence level,

E, = 1 .96 J .29g&701) = .028 (9.36%)

rzg = 1.96 J .w = .030 (4.86%)

39

where x1 ?;sc .299

x9 2 .677

m = 1000.

When the multivariate distribution is used, i.e., (23) of Section 10.6, the

corresponding errors are

7 = 2.45 J .299-
Tim = .042 (14%)

“9 = 2.45 J .617
1000 = .061 (9.9%)

40

5.5.2 Phase II Results

The accuracy of the Phase II results can be estimated using (13) of
Sectionl0.5. We illustrate using the combined gate and component-level faults.

At the gate-level the estimated coverage is

t *.a646

with a sample size of 229, the indistinguishable faults having been disquali-
fied. At the 95% confidence level the resultant error is

E = 1.96 .8646 (.13541
229 = .044 (5.1%), approximately.

At the component-level the estimated coverage is

2 =vy .979

with a sample size of 189. At the 95% confidence level the resultant error
is

E = 1.96 .020 (2.0X), approximately.

5.5.3 Urn Model Results

The accuracy of the Urn Model results will be illustrated by the com-
bined, gate-level FETSTO experiment. In this experiment the parameters were
estimated to be

P QZ .781

PO e.383

a x.464

using the approximate estimators (28) of Section 10.7.

41

From (29) the errors at the 95% level are, approximately,

cP = 1.96 /m = .041 (5.2%)

EPo =
1.96 ,/ .383 (.617)

1000 = .030 (7.8%)

ca = 1.96 &$j&& = .073 (15.7%).

42

TABLE 1

FAILURE RATES OF PARTITIONS OF THE CPU

PARTITION FAILURE RATE (FAILURESIHR x lO-6Z

#1 7.282

82 11.916

#3 7.922

#4 9.652

#5 7.063

X6 1.188

45.023

44

EXPERIMENT

FETSTO 1000

ADDSUB 600

FIB 600

QUAD 600

SERCOM 1000

LINCON 600

SELF-TEST 300

TABLE 2

NUMBER OF FAULTS INJECTED

GATE-LEVEL COMPONENT-LEVEL

400

400

400

400

400

400

200

45

TABLE 3a

PHASE I EXPERIMENTS

NUMBER OF GATE-LEVEL FAULTS INJECTED BY PARTITIONS

PROGRAMS: FETSTO, SERCOM

PARTITION S-a-O

1 82 (81)

2 147 (133)

3 87 (89)

4 98 (108)

5 75 (74)

6 14 (13)

TOTAL 503 (503)

S-a-l

76 (80)

127 (132)

98 (87)

108 (107)

75 (78)

13 (13)

497 (497)

PROGRAMS: FIB, ADDSUB, QUAD, LINCON

PARTITION S-a-O S-a-l

1 49 (48) 45 (49)

2 90 (78) 78 (80)

3 46 (52) 66 (53)

4 53 (63) 57 (65)

5 52 (46) 52 (48)

6 6 03) 6 (A). _
TOTAL 296 (296) 304 (303)

COMB INED

158 (162)

274 (265)

185 (176)

206 (214)

150 (157)

27 (261

1000 (1000)

COMB INED

94 (97)

168 (159)

112 (106)

110 (129)

104 (94)

12 (16)

600 (601)

() = Theoretical

46

TABLE 3b

PHASE I EXPERIMENTS

NUMBER OF COMPONENT-LEVEL FAULTS INJECTED BY PARTITIONS

PROGRAMS: FETSTO, FIB, ADDSUB, SERCOM, QUAD, LINCON

_P_ARTITILON S-a-O S-a-l COMB INED

1 38 (39) 39 (40) 77 (79)

2 58 (64) 79 (66) 137 (130)

3 52 (42) 42 (44) 94 (86)

4 49- (52) 43 (53) 92 (105)

TOTAL 197 (197) 203 (203) 400 (400)

() = Theoretical

47

I IL..

TABLE 4a

PHASE II EXPERIMENTS

NUMBER OF GATE-LEVEL FAULTS INJECTED BY PARTITIONS

PARTITION S-a-O

1 17 (24)

2 35 (40)

3 28 (27)

4 40 (32)

5 25 (24)

6 7 (41
TOTAL 152 (151)

S-a-l

17 (24)

39 (40)

27 (26)

34 (32)

25 (23)

6 (4)

148 (149)

COMBINED

34 (48)

74 (80)

55 (53)

74 (64)

50 (47)

13 (8)

300 (300)

TABLE 46

PHASE II EXPERIMENTS

NUMBER OF COMPONENT-LEVEL FAULTS INJECTED BY PARTITIONS

PARTITION S-a-O

1 15 (18)

2 38 (29)

3 21 (19)

4 15 (23)

TOTAL 89 (89)

S-a-l

20 (20)

35 (32)

22 (22)

23 (26)

100 (100)

COMBINED

35 (37)

73 (61)

43 (41)

38 (50)

189 (189)

() = Theoretical

48

FETSTO LATENCY DATA

GATE-LEVEL FAULTS _____--.--__ -I- -r FAULTS
INJECTED ETEC --

!!I-

0

0

0

0

0

0

0 -

I .__

nl7

0

0

D

--. ---_.
n 111

0 D

10

t

D 2

10

0 D

D 0

2 2

-.._.

la_

D

3

2

0

0

0

5 -

-- I

1

_ _ _ .._- -.__-.

FL. "1 "'2 n2

50 37 4 4

46 72 9 10

24 34 8 3

16 19 1 6

D 10 2

D 0 D 1

136 163 22 26

D

0

0

0

in 1 = detected S-a-O faults, ith cell "1 = detected S-a-l faults, ith cell

COMPONENT-LEVEL FAULTS

T- DETECTED FAULTS -r FAULTS
A!!4

111 -

38

58

52

49

-
197
-

TED
n

39

79

42

43

203

PARTITION

Pl

P2

P3

P4

P5

p6--

TOTAL
-~

-

IilJ-

22

36

18

16

-
92

-

!z-
D

5

0

0

-
5

-

--.-

“8
0

2

0

D

-
2

-

-

!!!L
3

2

D

2

--
1

-

“a
1

2

D

0

3

--
R16

0

0

D

D

-
D

-

!!L
D

0

0

D

0

.-
tz-.

D

0

D

0

-
0

-

!L
0

0

0

1

1

TABLE 5

F ETSTO

I COMBINED GATE-LEVEL FAULTS

r 29.9%
300 - 300 ---

T

200 200 --

I-

DETECTED DETECTED --
FAILURES FAILURES

61.7% UNDETECTED

4.8%

1 2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

FIGURE 2a

50

DETECTED

FAILURES

t
S-PI GATE-LEVEL FAULTS

UNDETECTED

0.4% 0.4% 0.4% 1.0%
O ------ I . I ! I I

I

--.

‘3
1 I I I t I

1 2 4 5 6 7 i 9 10 11

TIMETO DETECT (REPETITIONS)

DETECTED I

FAILURES 63.6% UNDETECTED

FETSTO

S-a-O GATE-LEVEL FAULTS

4.4%
I 3.8%

0.8W 0.4%
I I I I i b I I I I

v-r- 1 I I I I ’ 1 2 3 4 5 6 7 8 9 IO 11
TIMETO OETECT (REPETITIONS)

FiGURE 2b

51

L FETSTO

COMBINED GATE-LEVEL FAULTS IN PARTITION i+l

100
55.1%

DETECTED
FAILURES

38% UNDETECTED

5.1%

1
1.8%

I 1 I I I I I 1 --I--. I .- I I I I I
1 2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

100

DETECTED
FAILURES

1

I

C.OMBINED GATE-LEVEL FAULTS IN PARTITION tw

1

2.2%

I
t 0.4% 1.1%

I I I I I 1 # 1
1 2 3 4 5 6 7 8 9 10 11

TIME TO OETECT (REPETITIONS)

FIGURE 2c

42.3% UNOETECTED

6.9%

1

52

FETSTO

a- COMBINED GATE-LEVEL FAULTS IN PARTITION +3

100

60.5% UNOETECTED

DETECTED
FAILURES -- 31’4%

5.9%
2.2%

0 I , 0 , I I 1
I I I I I I 1 I

1 2 3 4 5 6 7 8 9 10 11

TIMETO OETECT (REPETITIONS)

16b

f

COMBINED GATE-LEVEL FAULTS IN PARTITION 4

100

DETECTED 75.7% UNDETECTED
FAILURES

- 17.0%

3.4% 3.4%

!
0.5%

0 I I I I t I I I I 1
L L 1 I I
1 2 3 4 5 6 7 8 9 10 11

-

j

T
TIMETO DETECT (REPETITIONS)

FIGURE 2d

53

FETSTO

150 -- COMBINED GATE-LEVEL FAULTS IN PARTITION +!i

100

DETECTED __
FAILURES

98% UNDETECTEO

0.7% 1.3%
0 -9 1 I I I 1 1 I I , I I I I I I I I I I 1

1 2 3 4 5 6 7 8 9 10 11
TIME TO DETECT (REPETITIONS)

COMBINED GATE-LEVEL FAULTS IN PARTITION #i6

DETECTED
FAILURES __

30

96.3% UNDETECTED f

3.1%
0 1 1 I t L 1 I I I I I I 1 L f 1

1 2 3 4 5 6 7 a 9

TIME TO DETECT IREPETITIONS)

FIGURE 2e

54

FETSTO

COMBINED COMPONENT-LEVEL FAULTS

35.5% UNDETECTED

8.5%

2.5%
1.3% 0.8%

0 ’ L 1 I I 1 1 1 1 ‘) 1

1 2 3 4 5 6 7 i 9 10 11

i

i

1
TIME TO OETECT (REPETITIONS)

FIGURE 2f

55

DETECTED

FAILURES

100

DETECTED

FAILURES

FETSTO

G-1 COMPONENT-LEVEL FAULTS

31% UNDETECTED

i 2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

S-a-Q COMPONENT-LEVEL FAULTS

40.1% UNDETECTED

6.1%
1 3.6% 2.5%

t I
t 0.5% I I , 0.5% 1 I I

I L I I I I r I 1 1
1 2 3 4 5 6 7 8 9 10 11

c

i

TIME TO DETECT (REPETITIONS)

FIGURE 2g

56

FETSTO

COMBINED COMPONENT-LEVEL FAULTS IN PARTITION +l -I,

100

26.6% UNDETECTED

DETECTED
FAILURES em

63.6%

0 I I I I I I I I I 1 1
1 2 3 4 5 6 7 8 9 10 11

TIME i0 DETECT (REPETITIONSj

COMBINED COMPONENT-LEVEL FAULTS IN PARTITION *

100
62%

DETECTED
FAILURES

16.6% UNDETECTED

12.4%

1 2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

FIGURE 2h

57

FETSTO

COMBINED COMPONENT-LEVEL FAULTS IN PARTITION +3

100

1 0 ETECTED
FAILURES

52.1% UNDETECTED

1 2 3 4 5 6 7 8 9 10 11

TiMETo DETECT (REPETITIONSI

COMBINED COMPONENT-LEVEL FAULTS IN PARTITION +4

52.2% UNDETECTED

DETECTED
FAILURES

- 37%

7.6%
2.2% 1.1%

0 I 1 * , I I , \-- -AL I I I 4 I 1 I I I I I
1 2 3 4 5 6 7 8 9 10 11

TIME TO OETECT (REPETITIONS)

FIGURE 2i

58

ADDSUE LATENCY DATA

GATE-LEVEL FAULTS

I I
PARTITION

Pl

P2

P3

P4

P5

. P6

TOTAL 84

li2

26 27 0 0

32 46 7 4

17 27 0 1

9 17 D 4

0 0 0 0

0 0 0 0

84 117 7 9

m3

4

DETECTE

m3 "3 m4

4 0 0

0 3 0

2 2 0

4 2 0

0

2

4

0

0

A!-

"3 m4

0 0

3 0

I

2 0

2 0

10

0 0

8 0

o 1 0 --l-l- 0 0 0

1018 0

IA’JL-S

"4 m5 "5 m6 "6

0 0 0 0 0

0 1 0 2 0

0 0 0 0 0

2 I i 0 0

0 0 0 0 0

0 0 0 0 0

2 2 12 0

"7 "7
111

8

0 0 0

10 0

0 0 0

1
0 0 0

0 0 0

0 0 0

10 0

m 1 = detected S-a-O faults, ith cell nl = detected S-a-l faults, ith cell

-
“8 -

0

0

0

0

0

A-

l!-

T

COMPONENT-LEVEL FAULTS - _____ --- --- __-- ~_--
l 1 FAULTS 1

PARTITION -- --
In I

Pl 22

P2 35

P3 19

P4 24

P5

P6 -

TOTAL 100

---.--- DETE!XCD FAULTS

"I O'2 "2 m3 ?3 "'4 "4 m5 "6 mb "6 m7

23 0 0 2 10 0 0 0 0 0 0

51 11 10 1 3 0 0 0 0 1 1 0

231 0 3 2 0 0 0 0 0 0 0

31 4 1 11 0 0 0 0 0 0 0

“7 m0

0 0

0 0

0 0

I

0 0

0 0

-.mCTED

"8 m n

0 38 39

0 58 79

0 52 42

0 49 43

128116 11 7 7 0 0 0 0 1 1 0 0 197 203

TABLE 6

361

DETECTEU
FAILURES

ADOSUB

COMBINED GATE-LEVEL FAULTS

59.5% UNDETECTED

I
1

t
I

I
L 1 I I 1 I I I

1 2 3 4 5 6 7 8 9’ 10 11

TIMETD DETECT (REPETITIONS!

FIGURE 3a

60

L 38.5%

ADDSUB

S-r-l GATE-LEVEL FAULTS

100 --

54.9% UNDETECTED

DETECTED --

FAILURES __

& 3-Q% , 2.6%
0.7% 0.3%

0 I I 1 3 t I I I I r I I I I I I I I I I

1 2 3 4 5 6 7 6 9 10 11

101

DETECTED

FAILURES

0

TIME TO DETECT (REPETITIONS)

S-a-O GATE-LEVEL FAULTS

1%

64.2% UNDETECTED

0.7% 0.7% 0.7% 0.7% 0.3% 0.3% I I I I I I I I 1 1 1 I I I I I I I I I L L I I
1 2 3 4 4 5 5 6 6 7 7 6 6 9 9 10 10 11 11 1 i -3

TIMETO DETECT (REPETITIONS)

FIGURE 3b

61

ADDSUB

I

COMBINED GATE-LEVEL FAULTS IN PARTITION #I

100

DETECTED 39.4% UNDETECTED
FAILURES

56.4%

4.3%
I I t I I I 1 ,

I I t t 1 I I 1 I I I
1 2 3 4 5 6 7 a 9 10 11

TIME TO OETECT (REPETITIONS)

I COMBINED GATE-LEVEL FAULTS IN PARTITION +?

100

DETECTED
FAILURES -- 42.9% UNDETECTED

__ 46.4%
I

6.5%

0.6% 1.2% 0.6%
I I I I a L I I I I 1 1 r--

1 2 3 4 5 6 7 a 9 10 --11

TIME TO DETECT (REPETITIONS)

FIGURE 3c

62

+ COMBINED GATE-LEVEL FAULTS IN PARTITION $3

DETECTED --
FAILURES

56.3% UNDETECTED

39.% , ,

0 -’
0.99/o, 3-6o/o

I I I I I I I I I I I
1 2 3 4 5 6 7 a 9 10 11

TIMETO DETECT (REPETITIONS1

J, COMBINED GATE-LEVEL FAULTS IN PARTITION #I

loo-

DETECTED
FAILURES 63.6% UNDETECTED

23.6%
9

3.6%2 5.5%
(l.a% 1.6%

4 I I I I L I 1 I 1 L
1 2 3 4 5 6 7 6 9 10 11

TIME TO DETECT (REPETITIONS)

FIGURE 3d

63

100

II ETECTED
FAILURES

+ COMBINED GATE-LEVEL FAULTS IN PARTITION #i

99% UNOETECTED

1%
0 * I I I

I 1 1 I 1 1 I I I I I
1 2 3 4 5 6 7 6 9 10 11

TIMETO DETECT (REPETITIONS)

ADDSUE

+ COMBINED GATE-LEVEL FAULTS IN PARTITION ti L

100 -

DETECTED lfXl% UNDETECTEO
FAILURES

0 , L I I I 1 t I I I I L I 1 I I I I 1 1 .
12 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

FIGURE 3e

64

ADDSUB

COMBINE0 COMPONENT-LEVEL FAULTS

200 - 200 -- -

t
OETECTEO --
FAILURES

32.3?? UNDETECTED

6.8%

0.5%
O+-+-+-- I I I t I r- t I 1 I 1 1 L

1 2 3 4 5 6 7 8 9 10 11
TIME TO DETECT (REPETITIONS)

+

FIGURE 3f

65

AOOSUB

DETECTED

FAILURES

0

63.1%
S-a-l COMPONENT-LEVEL FAULTS

27.6% UNDETECTED

1 5.4% ‘ 3.4%
0.5% I I 1 I l I 1 I L~-I _

I 1 I I 1 L I

1 2 3 4 5 6 7 8 9 10 11

TIMETO DETECT (REPETITIONS)

50.8%
S-a-0 COMPONENT-LEVEL FAULTS S-a-0 COMPONENT-LEVEL FAULTS

DETECTED

FAILURES 37.1% UNDETECTED

8.1%

0.5%
0 I . . I I I t I

I I I I I I I I I

1 2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

1 2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

FIGURE 39 FIGURE 39

66

AODSUB

+ COMBINED COMPONENT-LEVEL FAULTS IN PARTITION +l

OETECTEO
FAILURES __ 37.7% UNDETECTED

58.4%

3.9%
o- ~~ ä * I I I I 9 I I t

1 I I I I I I I 1
1 2 3 4 5 6 7 8 9 10 11

TIMETO DETECT (REPETITIONS)

L COMBINED COMPONENT-LEVEL FAULTS IN PARTITION +t? -c

100 ~-

62.6%

DETECTED
FAILURES 17.5% UNDETECTED

1.5z
I _I- 1 I t 1 I I I I I I I I I

1 2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

FIGURE 3h

67

Ii....

ADOSUB

100

0 ETECTED
FAILURES

0

COMBINED COMPONENT-LEVEL FAULTS IN PARTITION 3

48.9% UNDETECTED

I I I I t I I I I I I I I I 1 I
1 2 3 4 5 6 7 8 9 10 11

I
TIMETO DETECT (REPETITIONS)

-L
COMBINED COMPONENT-LEVEL FAULTS IN PARTITION +I

100 -r

DETECTED
FAILURES --

32.6% UNOETECTED
59.8%

5.4% 2.2%
0 -.+- 1 I 1 1 1 1 1 1 1 1 I

1 2 3 4 5 6 7 8 9 10 11

TIMETO DETECT (REPETITIONS)

FIGURE 3i

68

FIU LATENCY DATA

GATE-LEVEL FAULTS
1

1 FAULTS
DETECTED FAUL-S

"3 m4 "4 5

0 0 0 D

2 0 D D

0 0 0 D

11 D 0

D 0 0 0

0 0 0 0

3 10 0

PARTITION PARTITION
m m 1 1 "1 "2 "1 "2 "2 m3

Pl Pl =FF 30 29 4 30 29 4 1 0

P2 P2 33 48 10 33
1 I

48 10 2 1

P3 P3 17 27 2 17
I I

27 2 4 0

P4 P4 10 10 15 3 15 3 6 0

P5 P5 -L-L 0 0 10 10 1 D

P6 P6 D 0 D 0 D 0 0 0

TOTAL TOTAL 90 120 19 14 1 90 1 120 1 19

m. 0

0

0

0

"6 "6

0 0

0 0

0 0

1 1

0 0

0 0

1 1

0

i D
I

0

“I3
0

0

D

1

0

0

"6 "8 II n

0 0 49 45

0 0 90 78

D D 46 66

1 0 53 57

0 0 52 52

0 0 6 6

1 D 296 304

“8
0

0

D

0

0

0

1 D

'1 = detected S-a-O faults, ith cell
"1 = detected S-a-l faults, ith cell

COMPONENT-LEVEL FAULTS ---- ___----- ---- r
FAULTS

DETECTED FAUL-S rNJQ;fEp

m3 "3 m4 "4 m5 "5 m6 "6 m,7 "7 m*g "g II n
PARTITION

ml "1 m2

Pl 21 29 5

P2 43 60 6

P3 22 22 3

P4 25 23 6

P5

--K----~

TOTAL 111 134 20

38 39

58 79

0 0 D 0 0 0 0 0 0 0 0 0 5242

0 1 0 0 0 D 0 0 0 0 0 1 49 43

0 3 0 1 0 1 0 1 0 D 0 1 197 203

TABLE 7
0-l
ul

360

300

DETECTED
FAILURES

200

100

0

I--

FIB

COMBINED GATE-LEVEL FAULTS

56.2% UNDETECTED

0.2%
. 9 1 I I

L I I I I I I I I I I
1 2 3 4 5 6 7 a 9 10 11

TIME TO DETECT (REPETITIONS1

FIGURE 4a

i
+

70

FIB

100 -- e

DETECTED

FAILURES --

!$a-1 GATE-LEVEL FAULTS

54.30/o UNDETECTED

4.6%

0’. L
1 1.y * 0.3% 0.3% I , I I I 1 1 & I 1

1 2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETiTIONSI

OETECTED

FAILURES

i

62.2% UNDETECTED

6.4%

0.3% 0+--=-f t I 1 1 I I
I I I I I I I I I

1 2 3 4 5 6 7 8 9 10 11

TIMETO DETECT (REPETITIONS)

S-a-O GATE-LEVEL FAULTS

I
I

f

i

FIGURE 4b

71

FIB
A. -I-

COMBINED GATE-LEVEL FAULTS IN PARTITION # 1

100.

DETECTED
FAILURES 62-8> 31.9% UNDETECTED

) 5.3%

0 1 I I I I I I I I i 1
1 2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

. C~M~~INE~ GATE-LEVEL FAULTS IN PARTITION #2 COMBINED GATE-LEVEL FAULTS IN PARTITION #2 L

100 100
t t

48.2% 48.2%
t t

DETECTED DETECTED
FAILURES FAILURES

42.3% UNDETECTED
-- --

7.1% 7.1%

0.6% 0.6%
0 0 . . l l t t I I I I I I 1 1 I I

I I I I I I I I I I I I I I L L L L L L

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11

TIMETO DETECT (REPETITIONS) TIMETO DETECT (REPETITIONS)

FIGURE 4c FIGURE 4c

72

FIB

J- COMBINED GATE-LEVEL FAULTS IN PARTITION #3

100 -- -

DETECTED
FAILURES __ 55.3% UNDETECTED

39.3%

5.4%

0 I I I I I I I I I I I I I I a
1 2 3 4 5 6 7 8 9 10 11

TIMETO DETECT (REPETITIONS)

L COMBINED GATE-LEVEL FAULTS IN PARTITION $4 -I-

lOO--

DETECTED
FAILURES S5.5% UNOETECTED

0
1 2 3 4 5 6 7 8 9 10 11

TIMETO DETECT (REPETITIONS)

FIGURE 4d

73

FIB

100

DETECTED
FAILURES

I
COMBINED GATE-LEVEL FAULTS IN PARTITION +5

I--

98% UNOETECTED

1 .O% 1 .O% 1 I I I I I I L I
1 1

‘ I I I I I I I

1 2 3 4 5 6 7 8 9 10 11

I t-

COMBINED GATE-LEVEL FAULTS IN PARTITION +6

100 -

DETECTED ! 100% UNDETECTED

FAILURES

0 , I I t t I I I L t I 1 1 1 I I L I 1 I 1 1 I
1 2 3 4 5 6 7 8 9 10 11

- TIMETO DETECT (REPETITIONS)

FIGURE 4e

74

FIB

COMBINED COMPONENT-LEVEL FAULTS

61.3

200-- =

DETECTED
FAILURES

28% UNDETECTED

9.0%

0.25% I I I I I I L
2 3 4 5 6 7 8 9 10 11

TlMETD DETECT (REPETITIONS)

FIGURE 4f

75

-

FIB

S-a-1 COMPONENT-LEVEL FAULTS

1 2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS) TIME TO DETECT (REPETITIONS)

10c

DETECTED

FAILURES

56.35

22.7% UNDETECTED

S-a-0 COMPONENT-LEVEL FAULTS

33.5% UNDETECTED

TIMETO DETECT (REPETITIONS)

FIGURE 4g

76

FIB

COMBINED COMPONENT-LEVEL FAULTS IN PARTITION +l
-L

FIB

f

COMBINED COMPONENT-LEVEL FAULTS IN PARTITION +l

100

f

roo-

DETECTED
FAILURES

-L -L

DETECTED
FAILURES -- 26% UNDETECTED 26% UNDETECTED

84.9% 84.9%

9.1% 9.1%

0 0 I I I I I I I I I. I. 1 1 I I I I I I ‘ ‘ I
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11

TIMETO DETECT (REPETITIONS)

L COMBINED COMPONENT-LEVEL FAULTS IN PARTITION =i?

75.2%
loo-

,

DETECTED
FAILURES __ 15.3% UNDETECTED

5.8%
1 1.5% 0.7% 0.7% 0.7%

0 I I I 1 I I 1 I 1 I
1 2 3 4 5 6 7 8’ 9 10 11

TIME TO DETECT (REPETITIONS)

FIGURE 4h

77

FIB

COMBINED COMPONENT-LEVEL FAULTS IN PARTITION +3

100-r

DETECTED
FAILURES

46.8% UNDETECTED

46.8%

6.4%

0 1 1 I I I I I I r I I

1 2 3 4 5 6 7 8 9 10 11

TIMETO DETECT (REPETITIONS)

COMBINED GATE-LEVEL FAULTS IN PARTITION +I

loo-

DETECTED
FAILURES

29.3% UNDETECTED

52.2%

16.3%

1.1%
0 . 4 I I I I I I

b iI ‘I
1 I -r

1 2 3 4 8 9 1; 11
TIME TO DETECT (REPETITIONS)

FIGURE 4i

78

QUAD LATENCY DATA

GATE-LEVEL FAULTS

1 1 FAULTS

PARTlTlON DE_T_ECTED FAULTS INJI

Ill n, 111 2 n2 n13 n3 III ,, nJ nl

Pl 35 29 0 0 0 0 1 0 49 -- - .--- -- ----

P2 40 56 4 4 2 0 2 1 90

P3 23 31 0 0 0 0 0 0 46

P4 15 27 3 3 0 0 0 1 53

P5 12 0 0 0 0 0 0 52 -------

P6 0 0 0 0 0 0 0 0 6 --..

TOTAL 114 145 7 7 2 0 3 2 296

ml
= detected S-a-O faults, ith cell

"1 = detected S-a-l faults, ith ccl1

COMPONENT-LEVEL FAULTS

.TED
n

45

78 -.

66

57 -.

52

6

304

P3 25 24 2 1 0 1 0 0 52 42 --..-

P4 33 33 7 2 0 0 0 0 49 43 ..___-

P5 ~___--.

P6 ----__ -___

TOTAL 133 154 11 4 0 1 0 3 197 203

TABLE 8

300

2m

DETECTED
FAILURES

1ou

E

c

I-- *

I--

I-j-

OUAO

COMBINED GATE-LEVEL FAULTS

53.3% UNOETECTED

TIME TO DETECT (REPETITIONS)

FIGURE 5a

80

QUAD

S-a-1 GATE-LEVEL FAULTS

DETECTED --
49.3% UNDETECTED

FAILURES __

2.3%
0.7%

0 L 1 1 I I I 1 1 I
1 2 3 4 5 6 7 6 9 10 11

TIMETO DETECT (REPETITIONS)

1 2 3 4 5 6 7 6 9 10 11

TIME TO OETECT (REPETITIONS)

FIGURE 5b

81

QUA0

DETECTED DETECTED 66.1% 66.1% FAILURES FAILURES ,‘, ,‘, . . 30.6% UNOETECTEO

COMBINED GATE-LEVEL FAULTS IN PARTITION #l COMBINED GATE-LEVEL FAULTS IN PARTITION #l

100 100 - -

1.1% 1.1%
0 0 I I . 1 . 1 1 1 I I t t 1 1 1 1 I I t t I I 1 1 1 1 1 1 1 1 I I 1 1 I I 1 1

1 1 2 2 3 3 4 4 5 5 6 6 7 7 6 6 9 9 10 10 11 11
TIMETO DETECT (REPETITIONS)

COMBINED GATE-LEVEL FAULTS IN PARTITION +2

loo-- 57.1%
.

DETECTED 35.1% UNDETECTED
FAILURES *-

0 1 I 7 I L 1 1 I I I I 1 I I I I
1 2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

FIGURE 5c

82

QUAD

L
COMBINED GATE-LEVEL FAULTS IN PARTITION +3

DETECTED
FAILURES

-- 46.2% 51.6% UNOETECTED

0 I I I 1 I 1 I 1 I , -~ ~~
i 2 3 4 5 6 7 8 9 10 11

TIME TO OETECT (REPETITIONS)

1. -L
COMBINED GATE-LEVEL FAULTS IN PARTITION +I

DETECTED --
FAILURES

55.4% UNOETECTEO

36.2%

5.5%
0.9%

1 I
O-1 -----.-‘-

I I I I I I I I I 1 i 8 I 1
1 2 3 4 5 6 7 8 9 10 11

TIMETO DETECT (REPETITIONS)

FIGURE 5d

83

QUAD

lot

DETECTED
FAILURES

COMBINED GATE-LEVEL FAULTS IN PARTITION +6

97.1% UNDETECTEO

2.9%
0 5

I I I I I I I I 1 I I

1 2 3 4 5 6 7 8 9 10 11

TIMETO OETECT (REPETITIONS)

COMBINED GATE-LEVEL FAULTS IN PARTITION +6

OETECTED
FAILURES 100% UNOETECTEO

0 I 1 t , 1 1 * L 1 4 1 I 1
1 2 3 -4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

FIGURE 5e

84

WAD

COMBlNED COMPONENT-LEVEL FAULTS

DETECTED
FAILURES

23.5% UNDETECTED

0 I I * fi I I I I I I I I , I

1 2 3 4 5 6 7 8 9 10 11

I

TIME TO DETECT (REPETITIONS)

FIGURE 5f

85

100-m -

DETECTED --

FAILURES

1-

QUAD

S-a-l GATE-LEVEL FAULTS

-..

20.2% UNDETECTED

0 I t I L I I it I I L L 1 I I 1 L L 1
1 2 3 4 5 6 7 8 9 10 11

TIMETO DETECT (REPETITIONS)

100 -

DETECTED

FAILURES

I

S-a-0 GATE-LEVEL FAULTS

28.9% UNDETECTED

5.6%

1
Of 1 . I L 1 I 1 1 I I A 1

1 2 3 4 5 6 7 8 9 10 11

TIMETO OETECT (REPETITIONS)

FIGURE 5g

86

QUAD

COMBINED COMPONENT-LEVEL FAULTS IN PARTITION +l

t

DETECTED
FAILURES

28.6% UNDETECTED

0

TIME TO DETECT (REPETITIONS)

COMBINED COMPONENT-LEVEL FAULTS iN PARTITION x

100

DETECTED
FAILURES

10.2% UNDETECTED

1.5% 2.2%
4 I 4 I I I t I I , I-r I L L I i I 1

1 2 3 4 5 6 7 8 9 10 11

TIMETO DETECT (REPETITIONS)

/

FIGURE 5h

87

Jm COMBINED COMPONENT-LEVEL FAULTS IN PARTITION #3 -I-

.

100 --

DETECTED --
FAILURES

43.6% UNDETECTED
521%

3.2% 1.1%
0 I I I I

I I I I I I I I I I
1 2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

COMBINED COMPONENT-LEVEL FAULTS IN PARTITION 9 4

DETECTED
FAILURES 18.5% UNDETECTED

TIMETO DETECT (REPETITIONS)

FIGURE 5i

88

GATE-LEVEL FAULTS

PARTlTlOlI

-.----

Pl

P2

P3

l-4

P5

-p6

TOTAL

OETECTEO i FAULTS
-fBuW. .JhlI ID!-

kL!!-r n

60 45 82 76

58 76 147 127

39 43 07 9fl

25 46 90 100

1 2 75 75

0 0 14 13

183 212 5u a?-

H1 = detected S-a-O faults, ith cell

I PARTITION

P1

P2

P3

P4

P5

--J!li.~

TOTAL

GATE-LEVEL FAULTS :-LEVEL FAULTS
OETECTED OETECTED 1 FAULTS FAULTS

PARTITION --fM -mECTED

--,--3 "I-!Ln-

P1 37 33 49 45

P2 65 69 90 78

P3 25 34 46 66

P4 20 23 53 57

P5

I

1 3 52 52

----Is.-.- 0 0 6 6

TOTAL 140 162 3’lh 304

SERCOM LATENCY OATA

TABLE 9

LINCON LATENCY DATA

COMPL

PARTITION

Pl

P2

P3

P4

P5

P6

TOTAL

'NT-I
-ET
-fA

!!l-

27

30

26

29

'EL F
ET-

ILTS

-iii

"1 II

32 38

61 58

24 52

30 49

Ts
ED-

n -

39

79

42

43

"1
= detected S-a-l-faults, Ith cell

COMPONENT-LEVEL FAULTS
DETECTED FAULTS

P3

TAULE 10

SERCOM

DETECTED DETECTED
FAILURES FAILURES

300 L

200

t

300

200 -

100

COMBINED GATE-LEVEL FAULTS

600 -,

500

60.5% UNDETECTED

400
3 9.5%

0 f I I I - L I I 1 I I I I
1 2 3 4 5 6 7 8 9 10 11

TIMETO DETECT (REPETITlbNS)

FIGURE 6a

90

SERCOM

S-r-l GATE-LEVEL FAULTS

- -
42.7% 42.7%

-L -L
, ,

200 200 --

DETECTED DETECTED

FAILURES FAILURES

100 loo-

57.3% UNOETECTED

TIMETO DETECT (REPETITIONS)

FIGURE 6b

91

SERCOM

DETECTED

FAILURES

0

S-a-O GATE-LEVEL FAULTS

f

63.6% UNDETECTED

. I I I , I I I I t
L 1 1 L 1 L I 8 I 8

2 3 4 5 6 7 8 9 10 11

TIMETO DETECT (REPETITIONS)

FIGURE 6c

92

100

DETECTED
FAILURES

SERCOM

COMBINED GATE-LEVEL FAULTS IN PARTITION #l

66%

34% UNDETECTED

I * . I I I I I I I 1 1 I
2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

COMBINED GATE-LEVEL FAULTS IN PARTITION #2

51% UNDETECTED

TIMETO DETECT (REPETITIONS)

FIGURE 6d

93

SERCOM SERCOM

COMBINED GATE-LEVEL FAULTS IN PARTITION Xi COMBINED GATE-LEVEL FAULTS IN PARTITION Xi

100 100 - -

44% 44%
Cl ETECTED -- Cl ETECTED --

l l

FAILURES FAILURES
56% UNDETECTED 56% UNDETECTED

0 0 I I t t I I I I I I I I r r
1 1 2 2 3 3 4 4 5 5 8 8 7 7 8 8 9 9 10 10 11 11

TIME TO DETECT (REPETITIONS)

150
T

t

COMBINED GATE-LEVEL FAULTS IN PARTITION +I

100 --

0 ETECTED 34%
FAILURES

l

66% UNDETECTED

0 I , I 1 1 1 1 I 1 I
1 2 3 4 5 6 7 8 9 10 11

TIME TO OETECT (REPETITIONS)

FIGURE 6e

94

SERCOM

COMBINED GATE-LEVEL FAULTS IN PARTITION +5

98% UNOETECTEO

TIMETO DETECT (REPETITIONS)

COMBINED GATE-LEVEL FAULTS IN PARTITION +6

100

OETECTEO
FAILURES 100% UNOETECTEO

0 1!!,~!~:~

1 2 ‘3 4 5 6 7 a 9 10 11

TIMETO OETECT (REPETITIONS)

FIGURE 6f

95

DETECTED
FAILURES

100

-t-

SERCOM

COMBINED COMPONENT-LEVEL FAULTS

64.8%

.

35.2% UNOETECTEO

I t I 1 I t I I I
I I 1

‘4
I L I L I L

2 3 5 6 7 8 9 10 11
TIME TO OETECT (REPETITIONS)

FIGURE 6g

1-

96

t * S,l COMPONENT-LEVEL FAULTS +
72 12.4%

t

i
100

DETECTED
t

FAILURES 1

DETECTED ._ 27.646 UNDETECTED 27.646 UNDETECTED

FAILURES

0 I 0
t I I t t I I I I I I

1 2 3 4 5 6 7 a 9 10 11

SERCOM

56.9

100 -

OETECTED

FAILURES

I

TIMETO DETECT (REPETITIONS1

S-a-0 COMPONENT-LEVEL FAULTS

43.1% UNOETECTEO

0 ! L I I t . 7 1

1 2 3 4 5 a 7 8 9 10 11

I
-L

7lME TO DETECT (REPETITIONS)

FIGURE 6h

97

SERCOM

DETECTED
FAILURES

100

DETECTED
FAILURES

0

COMBINED COMPONENT-LEVEL FAULTS IN PARTITION +l

76

-.

v, 23.4% UNDETECTED

1 2 3 4 5 6 7 8 9 10 11
TIMETO DETECT (REPETITIONS)

COMBINED COMPONENT-LEVEL FAULTS IN PARTITION i+2

33.6% UNDETECTED

I I I
1 I 1 1 1 I

1 2 3 4 5 6 7 8 9 10 11

TIMETO OETECT (REPETITIONS)

FIGURE 6i

98

-

SERCOM

L COMBINE0 COMPONENT-LEVEL FAULTS IN PARTITION +3

100 --

46.6% UNOETECTEO

DETECTED
FAILURES --

53.2%

0 t I I 1 I L I 1 I I t
I I , 1

1 2 3 4
I

5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

COMBINED COMPONENT-LEVEL FAULTS IN PARTITION +4

100

OETECTED
FAILURES i

mm 64.1% 35.9% UNDETECTED

1 2 3 4 5 6 7 6 9 10 11

TIME TO DETECT (REPETITIONS1

FIGURE 63

99

LINCON

COMBINED GATE-LEVEL FAULTS

t 51.7%
-

300 - 300 -- -

t

200 -

i

200 -- -

OETECTEO OETECTEO
FAI LU RES FAI LU RES

100 -

i

100 ---

0 0 I

46.3% UNDETECTED

-I-
1 2 3 -4 5 6 7 6 9 10 11

TIME10 OETECT (REPETITIONSI

FIGURE 7a

100

100

DETECTED

FAILURES

0

-I-

I

I-

LINCON

S-a-l GATE-LEVEL FAULTS
53.3 I%

I-

.

-1

46.7% UNDETECTED

I I I I I I I I I I
I I I 1 I 1 I I I

2 3 4 5 6 7 8 9 10 11
TIME TO DETECT (REPETITIONS)

1,
509/o S-a-O GATE-LEVEL FAULTS

50% UNDETECTED

100 -’

DETECTED

FAILURES

0 r 1 * 1 9 I I 1 I I I
1 2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

FIGURE 7b

101

LINCON

100

f

COMBINED GATE-LEVEL FAULTS IN PARTITION +l

DETECTED
FAILURES

jY0
25.5% UNDETECTED

0 1
1 2 3 4 5 6 7 8 9 10 11

74.!

~

100 ---

OETECTEO __
FAILURES

TIME TO DETECT (REPETITIONS)

COMBINED GATE-LEVEL FAULTS IN PARTITION 2

20.2% UNDETECTED

1 2 3 4 5 6 7 8 9 10 11
TIME TO DETECT (REPETITIONS)

FIGURE 7c

102

LINCON

-L COMBINED GATE-LEVEL FAULTS IN PARTJTION it3

100 --

47.396 UNDETECTED

DETECTED
FAILURES -r

52.7%

:

100

0 ETECTED
FAILURES

a

-L

I

I --

1 2 3 4 5 6 7 a 9 10 11

TIME TO OETECT (REPETITION&

COMBINED GATE-LEVEL FAULTS IN PARTITION #4

60.9% UNDETECTED

39.1%

.

4 I I I 1 I I I 1 1
1 2 3 4 5 6 7 8 9 10 11

TIMETO DETECT (REPETITIONS)

FIGURE 7d

103

100

DETECTED
FAILURES

LINCON

I 3.6%

COMBINED GATE-LEVEL FAULTS IN PARTITION Ss

96.2% UNOETECTEO t

0 (1 I I i I 1 I 1 1 I
1 2 3 4 5 6 7 a 9 10 11

TIME TO DETECT (REPETITIONS)

-L COMBINED GATE-LEVEL FAULTS IN PARTITION #6 -I,

100 --L

DETECTED 100% UNDETECTED
FAILURES --

0 I I I 1 I

1 2 3 4 5 6 7 8 9 10 11

TIMETO DETECT (REPETITIONS)

FIGURE 7e

104

LINCON

COMBINED GATE-LEVEL FAULTS

23.5% UNOETECTED

DETECTEO m-
FAILURES

76.5%

300

0 ~.. . ..-- ! ,~~ :. 1 I L I I 1 I I I
1 2 3 4 5 6 7 8 9 10 11

TIME TO UETECT (REPETITIONS)

FIGURE 7f

105

100 -

DETECTEO

FAILURES

/

100

DETECTED

FAILURES

0

LINCON

S-,1 COMPONENT-LEVEL FAULTS

21.2% UNDETECTED

TIMETO DETECT (REPETITIONS)

S-b0 COMPONENT-LEVEL FAULTS

25.9% UNOETECTEO

I I t ! I 1 t
1

t I
1 1

t
1 I I I

2
1 1 1

3 4 5 6 7 8 9 10 11

TIME TO OETECT (REPETITIONS)

FIGURE 7g

106

100

DETECTED
FAILURES

0

LINCON

COMBINED COMPONENT-LEVEL FAULTS IN PARTITION +l

20.8% UNDETECTED

79.2%
4

I I I I I 1 I t I I I 4 1 1 I I 1 I I I 1
1 2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

COMBINED COMPONENT-LEVEL FAULTS IN PARTlTlON 2

89.1%

100

10.9% UNOETECTEO

DETECTED --
FAILURES

0 L
‘3

I , 1 1 I I 1 I
1 2

I
4 5 6 7 8 9 10 11

TIMETO CIETECT (REPETITIONS)

FIGURE 7h

107

LINCON

‘COMBINED COMPONENT-LEVEL FAULTS IN PARTITION +3

100

DETECTED
FAILURES

0

41.5% UNDETECTED
-- 58.5%

I t I I 9 I I I t
1 ‘ I I 1 I I I I I I

1 2 3 4 5 6 7 a 9 10 11

TIME TO DETECT (REPETITIONS)

100

f

COMBINED COMPONENT-LEVEL FAULTS IN PARTITION +I

26.1% UNDETECTED

0 ETECTED
FAILURES

73.9’

t

0 c
I I I I I I I. t 1

I I I I I I 1 I I 1

2 3 4 5 a 7 a 9 IO II
TIMETO DETECT (REPETITIONS)

FIGURE 7i

108

III

SERCOM

QUAD

503 I 183 i 36.4 63.6 497 212 42.7 57.3

I
296 i 114 57.4 304 145 47 .a 49.3

I

LiNCON I
I

296 ; 148 50.0 50.0 304 I 162 53.3
!
) 46.7 I

COMPONENT-LEVE-L FAULTS
II I I

accscs 197 1 iO0 i0.a 37.1 203 129
I 63.i ! 27.6

-
!

FIZI 197 I

197 1 SERCOH i 112 56.9 43.1 203 147 72.4 27.6

I
QUAO 197 133 67.5 26.9 / 203 154 75.9 i 20.2

/
I

L!XON 197 i 146
i
(74.1 25.9 / 203 1 160 1 78.8 i 21.2

SUMMARY OF PHASE I RESULTS

TABLE 11

109

GATE-LEVEL FAULTS (e6.42 DETECTION)

MKTITIOr~

Pl

P2

P?

P4

P5

P6 --_

TOTAL __-

PARTITION .- FAULTS b

___-

Pl

P2

ml 1 "1 1 m

P3

15 19 15

38 34 38

20 21 21

P4 15 23 15

P5

P6 -- ._--_

TOTAL _-----

.-

-_ -d-p1IB9

_.-

OETCCf'EO T FAULTS
---L
ml
14

26

20

33

2

3 --

98 --

:5

“I -
14

32

19

26

7

2

100

INJI

m

16

30

20

TED

n

16

35

19

FAI
[EST
:NOWN

1

25

17

37 31 43

8 9 7

4 4 2

115 114 95

m-
.S
IILO
IRANCI'

27

33

22

16

2

3

103

TO.iAL TOTAL

DETECTED INJECTED

28 32

58 65

39 39

59

9

5 --

198

68

17

8

229*

m = S-a-O faults

n = S-a-l faults

* 71 faults were disqualified as indistinguishable

(COMPONENT-LEVEL FAULTS (97.74, DETECTION) - . .._ -_-- ____
DETECTED-FAULTS

TED

.-A-

20

35

22

23

100

---__
DETECTED

FAU .-
I'EST
(NOWN

5

35

16

23

79

‘S
IILD
IRANCH

29

37

25

15

--

106

TOTAL TOTAL

DETECTED INJECTED

34 35

72 73

41 43

38 38

-_-

185 -- 189*

* 11 faults were disqualified as indistinguishable.

SELF-TEST DATA

TABLE 12

TABLE 13

FAULT DETECTION BY THE INOIVIDUAL TESTS
COMPRISING SELF-TEST

COWONEKT-LEVEL GATE-LEVEL

TEST # - 1 FREQ

106
10 .2

3
:
f3
9

:Y

:i
21

t5
29

i;
38
44
49

f S'
102
108
110
144
187

241

:
:
:
:
:
:
:
&I (UNDETECTED)

184

OUT OF RANGE
TEST I 16

TEST I - 1 m

3’
4
5

f

1:

:3

::

f :

5:

39

3:
36

::
43

ii
98

100

2:
112
114
177
236
239

241

OUT OF RANGE
TEST #

103
1

:
1
4

:

1

:

:
1

:

102'2) (UNDETECTED)

10

300

(1) 11 were subsequently dfsquallfied as fndistfngufshablc

(2) 71 ww8 subsequently ditqualffied as fndistfngulshablc

111

I--- #l
I

87.5
t

87 5 __- -- .~ A---
l

COMPONENT-LEVEL FAULTS

S-a-6 Faults
~___

S-a-l Faults
Percent Percent

Partition Detected Detected

I1 100.0 95.0 -.

#2 100.0 97.1

%3 95.2 95.5 .--

Y4 100.0 100.0 -

SELF-TEST COVERAGE SUMMARIES BY PARTITION

TABLE 14

-. -

T=Exact estimate
N=Approximatc estimate
A=Empirical value

TEST (1-a) (a) P PO

FETSTO/GATE

FETSTO/COMP

FIB/GATE

FIB/COMP

ADOSUB/GATE

AODSUB/COHP

COMBINED T 0.5614 0.4386 0.7776 0.3845
Ii 0.5359 0.4641 0.7807 0.383

S-a-0 T 0.5168 0.4832 0.7413 0.3647
1 0.5 0.5 0.7432 0.3638

S-a-l T 0.6137 0.3863 E~~g 0.4049
!i 0.575 0.425 . 0.402

COt4BINEO T 0.5280 0.4720 0.7927 0.6465
N 0.5093 0.4907 0.7946 0.6450
A

S-a-0 T 0.6603 0.3397 0.7698 0.5066
z 0.6061 0.3939 0.7797 9.5990

S-a-l T 0.3594 0.6406 0.8070 0.6898
N 0.3571 0.6429 0.8071 0.6897
A

COMBINED T 0.3177 0.6823 0.8366 0.4184
N 0.3167 0.6833 0.8367 0.4183
A

- S-a-0 T 0.2909 0.7091 0.8035 0.3784
i 0.2903 0.7097 0.8036 0.3784

S-a-l T 0.3466 0.6534 0.8632 0.4573 /
i 0.3448 0.6552 0.8633 0.4572

COMBINED T 0.2958 0.7042 0.8507 0.7200
i 0.2951 0.7049 0.8507 0.7200

S-a-0 T 0 1.000 0.8473 0.6650
i 0 1.000 0.8473 0.6650

S-a-l T 0.4468 0.5532 0.8531 0.7738
N 0.4390 0.5610 0.8535 0.7734
A

COM8INEO T 0.5309 0.4691 0.8254 0.4058
i 0.5116 0.4884 0.8272 0.4050

S-a-p T 0.6051 0.3949 0.7874 0.3604
2 0.5686 0.4314 0.7925 0.3581

S-a-l T 0.4353 0.5647 0.3536 0.4509
i 0.4286 0.5714 0.8540 0.4507

-. COMBINED T 0.3401 0.6599 0.a413 0.6776
N a.3385 0.6615 0.8413 0.6775
A

S-a-0 T 0.3153 0.6847 0.3064 0.6295
r4 0.3143 0.6857 0.a065 0.6294

S-a-l T 0.3693 0.6307 0.3706 0.7242
i 0.3667 0.6333 0.8737 0.7241

URN MODEL OISTRIBUT!ONS
AN0 PARAt!ETER ESTIMATES

TABLE 15

114

*occupancy probabilities

Cell* Gil' Cell' Cell* Cell* Ceil* Cell* Cell* Cell*
31 12 33 44 35 #6 17 18 59

0.299 0.038 0.021 0.012 0.007 0.004 0.002 0.001 0.617
0.299 0.039 0.021 0.011 0.006 0.003 0.002 0.001 0.617
0.299 0.048 0.021 0 0 0.006 0.002 0.007 0.617

0.270 0.046 0.024 0.012 0.006 0.003 0.002 0.001 0.6362
0.270 0.047 0.023 0.012 0.006 0.003 0.001 0.001 0.6362
0.270 0.044 0.038 0 0 0.008 0 0.004 0.636

0.328 0.030 - 0.018 0.011 0.007 0.004 0.003 0.002 0.5976
0.328 0.032 0.018 0.010 0.006 0.003 0.002 0.001 0.598
0.328 0.052 0.004 0 0 0.004 0.004 0.010 0.598

0.5125 0.063 0.033 0.018 0.009 0.005 0.003 0.001 0.3550
0.5125 0.065 0.033 0.017 0.009 0.004 0.002 0.001 0.355
0.513 0.085 0.025 0.003 0 0 0.013 0.008 0.355

0.467 0.047 0.031 0.021 0.014 0.009 0.006 0.004 0.4010
0.467 0.052 0.032 0.019 0.012 0.007 0.004 0.003 0.4010
0.467 0.061 0.036 0.005 0 0 0.025 0.005 0.401

0.557 0.085 0.031 0.011 0.004 0.001 0.001 0.000 0.3103
0.557 0.086 0.031 0.011 0.004 0.001 0.001 0.000 0.3103
0.557 0.108 0.015 0 0 0 0 .O.OlO 0.310

0.350 0.047 0.015 0.005 0.001 0 0 0 0.5816
0.350 0.047 0.015 0.005 0.001 0 0.5817
0.350 0.055 0.007 0.002 0.002

00.002
0

i.002
0.582 - -~~ ~~ ~ ~~

0.304 0.053 0.015 0.004 0.001 0 i i 0.6216
0.304 0.053 0.015 0.004 0.001 0.6216
0.304 0.064 0.003 0.003 0

:
0 0.003 0.622

0.395 0.041 0.014 0.005 0.002 0.001 0 0.5427
0.395 0.041 0.014 0.005 0.002 0.001 0.5428
0.395 0.046 0.010 0 0.003 0.003 0

:
0.543

0.613 0.076 0.022 0.007 0.002 0.001 0 0.280
0.613 0.076 0.022 0.007 0.002 0.001 0 0.280
0.613 0.090 0.008 0.003 0.003 0.003 0 0.003 0.280

0.5635 0.1015 0 0 0 0
:

0 0.335
0.5635 0.1015 0 0 0 0 0.335
0.563 0.102 0 0 0 0 0 0.335

0.660 0.063 0.028 0.013 0.006 0.003 0.001 0.001 0.2266
0.660 0.064 0.028 0.012 0.005 0.002 0.001 0.2266
0.660 0.079 0.015 0.005 0.005 0.005 0

i.005
0.227

0.335 0.033 0.018 0.009 0.005 0.003 0.001 0.001 0.5950
0.335 0.034 0.018 0.009 0.005 0.002 0.001 0.001 0.5950
0.335 0.027 0.030 0.003 0.005 0.003 0.002 0 0.595

0.284 0.030 0.018
0.284 0.032 0.018
0.284 0.024 0.034

___~.
0.385 0.037 0.016
0.385 0.038 0.016
0.385 0.030 0.026

0.570 0.071 0.024
0.570 0.071 0.024
0.570 0.068 0.035

0.011 0.007 0.004 0.002 0.001 0.6419
0.010 0.006 0.003 0.002 0.001 0.6419
0 0.007 0.007 0.003 0 0.642

0.007 0.003 0.001 0.001 0.5493
0.007 0.003 0.001 0.001

:
0.5493

0.007 0.003 0 0 0 0.549

0.008 0.003 0.001 0 0 0.3225
0.008 0.003 0.001 0.3225
0 0 0.005

i :
0.323

0.508 0.083 0.026 0.008 !I.303 0.001 0 0.3705
0.508 0.084 0.026 0.008 0.x3 0.001

:
0.3706

0.508 0.081 0.036 0 Q 0.005
i

0 0.371

.0.631 0.059 0.022 0.308 0.003 o.on1 0 0.2759
0.631 0.059 0.022 0.008 0.003 0.001

i
0.2759

0.631 0.054 0.034- 0 0 0.005
:

0 0.276

IJRN MODEL DISTRIBUTIONS
AND PARAMETER ESTIMATES

TABLE 15

115

URN MOOEL OISTRIBUTION

600
l

300 -

;

1

200--

OETECTEO --
FAILURES

FETSTO

COMBINE0 GATE-LEVEL FAULTS

1.9%
.

61.7%UNOETECTED

+

T I
1

I- -

TIME TO OETECT(REPETITlONS)

FIGURE 8a

116

URN MOOEL DISTRIBUTION

FETSTO

S-al GATE-LEVEL FAULTS

OETECTEO

FAILURES

0

0.4% 1.0?6

0 ! I 2 I I I I ,
I i i 3 4 5 6 7 8 9 io it

TIME TO DETECT (REPETITIONS)

S-a-0 GATE-LEVEL FAULTS

63.6% UNDETECTED 1

0.8% 0.4%
I I I I L I\ ! 1 1 I 1

i

I I I 1 : -f

1 2 3 4 6 7 a 9 10 11
TIMETO OETECT iREPETITIONSI

FIGURE 8b

117

0 ETECTED
FAILURES

URN MOOEL DISTRIBUTION

FETSTO

COMBINED COMPONENT-LEVEL FAULTS

200

1

I
lOO--

i

t

35.5% UNDETECTED

I -

TlMETO OETECT (REPETITIONS)

FIGURE 8c

118

URN MOOEL DISTRIBUTION

FETSTO

101

DETECTED

FAILURES

O-

Se1 COMPONENT-LEVEL FAULTS

31% UNDETECTED

1 2 3 4 5 6 7 a 9 10 11

TIME TO OETECT (REPETITIONS)

S-a-O COMPONENT-LEVEL FAULTS

lOO-- 46.7%
I

DETECTED 40.1% UNDETECTED

FAILURES --

TIME TO DETECT (REPETITIONS)

FIGURE 8d

119

360

OETECTED
FAILURES

URN MOOEL DISTRIBUTION

AOOSUB

COMBINED GATE-LEVEL FAULTS

59.5% UNDETECTED

! 1
t

TIME TO OETECT (FiEPETITIONS)

FIGURE 9a

120

URN MODEL DISTRIBUTION

AOOSUB

OETECTEO

FAILURES

h-1 GATE-LEVEL FAULTS

100 -

28.4%,
-I

DETECTED -- 64.2% UNDETECTED

FAILURES __

\

\).

0 1 I I , 1 L 1
1 2 3 4 5 6 3 8 9 10 11

54.9% UNDETECTED

TIME TO DETECT (REPETITIONS)

S-a-O GATE-LEVEL FAULTS

TIME TO DETECT (REPETITIONS)

FIGURE 9b

121

URN MODEL OlSTRlBUTlON

300

2oc

DETECTED
FAILURES

100

+

I --

I

I --

l--

t

AOOSUB

COMBINED COMPONENT-LEVEL FAULTS

6.8%

323?G UNDETECTED

1 2 3 4 5 6 7 8 9 10 11
TIMETO DETECT (REPETITIONS)

FIGURE 9c

122

URN MOOEL DlSTRlBUTlON

ADDSUB

DETECTED

FAILu RES

0 I

h-1 COMPONENT-LEVEL FAULTS

27.6% UNDETECTED

I

1 2 3 4 5 6 7 E 9 10 11

TIMETO OETECT (REPETITIONS)

t
S-a-0 COMPONENT-LEVEL FAULTS

* _^ --*

, --

I-

OETECTED

FAILURES 37.1% UNDETECTED

3 4 5 6 7 6 9 10 11

TIME TO DETECT (REPETITIONS1

FIGURE 9d

123

360

DETECTED
FAILURES

URN MODEL DlSTRlEUTlON

COMBINED GATE-LEVEL FAULTS

58.2% UNDETECTED

0.2?6 L # 1 , , I I ‘ L 6
1 2 3 4 5 6 7 8 9 10 11

TIMETD OETECT (REPETITIONS)

FIGURE 10a

124

URN MODEL DISTRIBUTION

FIB

S-a-1 GATE-LEVEL FAULTS

DETECTED

FAILURES
54.3?6 UNDETECTED

DETECTED

FAILURES

. 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

S-a-D GATE-LEVEL FAULTS

62.2% UNDETECTED

TIMETO DETECT (REPETITIONS)

FIGURE 10b

125

URN MOOEL DISTRIBUTION

FIB

300

f

COMBINED COMPONENT-LEVEL FAULTS

200--

DETECI ED
FAILURES

lOO--

280/a UNOETECTEO

1 2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIiNS)

FIGURE 1Oc

126

URN MOOEL DISTRIBUTION

FIB

S-a-1 COMPONENT-LEVEL FAULTS

i
100 --

DETECTED

FAILURES -- 227?G UNDETECTED

0.5%
4 I I 1 I I I

3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS)

100

DETECTED

FAILURES

I

I
56X

T

S-a-O COMPONENT-LEVEL FAULTS

33.5% UNDETECTED

t 1 I I 9
1 I I 6 I

1 2 3 4 5 6 7 8 9 10 11
TIME TO DETECT (REPETITIONS)

FIGURE 10d

127

III

TEST %P) '(aa) "(POPO) '(Pa) o(PPo) "(aPo)
-__------___ ------._----__ --~------- ---

FETSO/GATE

FETSTO/COMP

FIB/GATE

FIO/COMP

ADDSUB/GATE

ADDSUO/COMP

COMBINED

S-a-0

S-a-l

COMBINED

S-a-0

S-a-l

COMBINED

s-a-p

S-a-l

COMBINED

S-a-p

S-a-1

CDhUlIIED

S-a-0

S-a-l

COMBlNED

s-a-)3

S-a-1

.45874E-3

.10553E-2

.80100E-3

.64313E-3

.16216E-2

.11130E-2

.54472E-3

.14096E-2

.84973E-3

.44114E-3

.l8519E-2

.33012E-2

.42498E-2

.29281E-2

.61628E-2

.57103E-2

.36941E-2

.6749fJE-2

.UOI317E-2

.34677E-2

.23886E-3

.46305E-3

.49385E-3

.57644E-3

.12976E-2

.10547E-2

.40560E-3

.79460E-3

.81649E-3

.50403E-3

.71435E-4

.05297E-4

.25294E-3

.73853E-4

.67009E-3

.13421E-4

.3638lE-5

.45248E-5

.11592E-4

.20647E-5

.80075E-3

.5995X-3

.16319E-2

.91413E-3

.49296E-3

.12593E-2

.76671E-3

.67568E-2

.36954E-2

.71298E-2

.77717E-2

.35619E-2

.63014E-2

.81346E-2

.86450E-3

.40378E-3

.79192E-3

.81513E-3

.54633E-3

.11841E-2

.98431E-3

.47317E-4

.84486E-4

.42279E-3

.46365E-4

.51528E-5

.67686E-5

.16280E-4

-.44562E-5 -.35322C-4

-.48770E-5 -.41971E-4

-.18026E-4 -.12646E-3

-.62756E-5 -.60236E-4

-.1094BE-3 -.52802E-3

-.62136E-6 -.11471E-4

-.76297E-7 -.18193E-5

-.95559E-7 -.21307E-5

-.24245E-6 -.61405E-5

-.63936E-7 -.17476E-5

-.25023E-5

-.38398E-5

-.28793E-4

-.13664E-5

-.18170E-6

-.25128f-6

-.54722E-6

-.42921E-4

-.41539E-4

-.19350E-3

-.244aaE-4

-.41501E-5

- .52836E-5

-.13542E-4

TABLE 16 ERROR CDVARIANCE MATRIX ELEMENTS FOR URN MODEL ESTIMATES

TESr

FETSTO/GATE

FETSTO/COMP

FIB/GATE

FIB/COMP

AOOSUB/GATE

ADDSUB/COMP

COMBINED 2193.2 544.74 4198.7 -84.059 28.486 78.984

S-a-b 949.65 303.89 2162.2 -24.438 7.7870 ?7.287

S-a-l 1272.7 241.53 2041.0 -74.940 27.266 59.115

COMBINED 1559.5 343.23 1738.6 -39.068 12.896 35.441

S-a-b 646.59 175.28 799.62 -68.002 26.880 65.588

S-a-l 890.52 175.13 948.18 - 2.1108 .50641 1.9035

COMBINED 1835.8 270.70 2465.5 - 1.8078 .33723 1..2139

S-a-P 709.41 148.15 1258.4 - .47553 .084030 .39718

S-a-l 1176.9 123.74 1224.8 - 1.6878 .33677 .93009

COMBINED 2266.8 288.38 1984.0 - 1.3496 .28287 .99971

S-a-b 1012.7 0.0 884.27 0.0 0.0 0.0

S-a-l 1249.4 148.11 1157.1 - 8.7288 3.1829 7.3280

COMBINED 1673.4 271.79 2479.6 -38.124 11.992 27.598

S-a-6 622.48 143.34 1271.5 -36.540 13.704 33.694

S-a-l 1094.3 128.72 1226.9 -6.5232 1.6383 3.8560

COMBINED 2028.6 280.75 1830.4 -2.9338 .65239 2.1317

S-a-0 794.12 158.70 844.50 - .85287 .16471 .70792

S-a-l 1304.3 122.94 1016.0 -2.6093 .68922 1.6900

TABLE 17 INVERSE ERROR COVARIANCE MATRlX ELEMEMTS FOR URII MODEL ESTlMATES

FETSWGATE COMBINED 1000 299 383 564 -407 491 -181 97

S-a-O 503 136 183 277 -235 282 -94 47

S-a-l 497 163 200 287 -172 209 -a7 50

FETSO/COMP COMBINED 400 205 258 366 -263 316 -108 55

S-a-0 197 92 118 la4 -116 142 -66 40

S-a-l 203 113 140 182 -147 174 -42 15

FIWGATE COMBIlUED 600 210 251 311 -227 268 -60 19

S-a-0 296 90 112 143 -123 145 -31 9

S-a-l 304 120 139 168 -104 123 -29 10

FIB/COMP COWBIHE~ 400 245 288 349 -240 233 -61 18

S-a-g 197 111 131 151 -120 140 -20 0

S-a-l 203 134 157 198 -120 143 -41 18

ADDSUB/GATE COtiBINEO 600 201 243 329 -208 250 -86

S-a-0 296 84 106 157 -103 125 -51

S-a-l 304 117 137 172 -105 125 -35

.ADDSU3/COMP COMBINED 400 228 271 336 -236 279 -65

S-a-0 197 100 124 159 -133 157 -35

S-a-l 203 123 147 177 -103 122 -30

44

29

15

22

11

11

a a 3
m=L m
14 i ml Trill A B 1 Zlml C 0

L=i L=i

TABLE 18 INTERMEDIATE URN :IODEL FARAMETER ESTIVATES

130

6.0 SUMMARY OF EXPERIMENTS

6.1 Phase I Experiments

From the results of the previous section we observe that

l Most detected faults are detected in the first repetition. Subsequent
repetitions do not appreciably increase the proportion of detected
faults.

l S-a-l faults are easier to detect than S-a-O faults.

a The micromemory (i.e., Partition #5) contains a large proportion of
indistinguishable faults.

l Faults in memory units (i.e., Partitions #5, #6) are difficult to detect.

l A large proportion of faults remain undetected after as many as 8 repe-
titions.

l Component-level faults are easier to detect than gate-level faults.

l The coverage estimates of the Phase I experiments are not corrected for
indistinguishable fault content.

Subsequent analysis of undetected faults indicates that the proportion of
indistinguishable faults at the gate-level is 23.66% and 5.5% at the component-
level. The combined, S-a-l and S-a-O coverage estimates should be corrected by
dividing the raw coverage by l-y* where

1 - y" = .7633 for gate-level coverage

= .945 for component-level coverage

As an example consider the raw coverage in the FETSTO experiment. The
uncorrected data indicates 29.9% detection in the 1st repetition. The corrected
coverage is, in fact, 39.17%. The 61.7% undetected is corrected to 49.84%.

The poor detection coverage of the six programs of Phase I is not surpris-
ing particularly if one considers that Self-Test, which exercises a much great-
er mix and quantity of instructions, achieve 86.5% detection (at the gate-level).
Table 19 shows the instruction mix and quantity of instructions executed versus
coverage for each of the six programs. By contrast, Self-Test exercises almost
the entire instruction set of the CPU and executes approximately 2000 instruc-
tions in a single pass.

In the present study no attempt was made to evaluate the coverage capabil-
ity of each instruction of the Phase I experiments. As a consequence, it is
difficult to correlate instructions mix and coverage. However, the number of
executed instructions was plotted versus coverage for each of the programs for
gate-level and component-level faults. These results are given in Figures 11
and 12, respectively. The proportions of undetected faults in the QUAD, SERCOM
and LINCON experiments were obtained by extrapolating to 8 repetitions, by the
method described in Sections 5.2.4, 5.2.5 and 5.2.6.

131

Referring to the figures, the proportion of faults detected in the first repe-
tition and the proportion of undetected faults after 8 repetitions are linear
functions of the number of executed instruction, at least in the range of values
considered. It is unlikely, however, that this trend will continue for very
large numbers of executed instructions.

The relatively high coverage of S-a-l faults can be rationalized as fol-
lows. The most significant bits of most arithmetic registers are normally zero.
Thus, a S-a-l fault in one of these bits will be detected whenever the contents
of the register are used, whereas, a S-a-O fault will only be detected when the
faulted bit is exercised to its complement.

6.2 Phase II Experiments

From the results of the Phase II (i.e., Self-Test) experiments we observe

l There is a significant difference in coverage of gate-level versus
component-level faults, e.g., after disqualifying indistinguishable
faults gate-level fault coverage was 86.5% whereas component-level fault
coverage was 97.9%.

o There was a large proportion of indistinguishable faults in the gate-
level emulation, e.g., 23.7%. The worst offender was the micromemory
which yielded 33 indistinguishable faultsout of a total of 41 selected.

l Only 48% of all detected faults were detected by an explicit test, i.e.,
95 out of 198. 103 faults were detected because the fault resulted in a
wild branch, i.e., a jump out of the first test.

l Most of the 241 tests comprising Self-Test were redundant; only 46 tests
resulted in a detection.

l Of the 95 faults detected by an explicit test 59 were detected by the
first 23 tests.

l This particular Self-Test was designed to exercise an instruction set
rather than explicit hardware. An noted in Section 7, this approach
results in an inefficient Self-Test since, it turned out, most of the
tests exercised the same hardware.

6.3 Urn Model Distributions

From previous studies and results of experiments we make the following
observations regarding the Urn Model.

l Despite its simplicity the Urn Model results in good correlation with
all of the empirical distributions of the study. This is not surprising
considering that the model has 3 degrees-of-freedom available for a best
fit, i.e., P, PO and a, and the empirical distributions are heavily

weighted in the first, second and last latency cells. As indicated in
Section 9, other distributions could be conjectured that would yield
equally good correlation.

132

l The generalized Urn Model, defined in Section 9, was not evaluated in the
study. However, because faults were identified by partition, it is pos-
sible to obtain a rough estimate of g (a) by assuming a constant proba-
bility of detection in each partition and estimating the corresponding
Urn Model parameter, a, suitably weighted by the failure rate of the
partition.

% o= DETECTED IN 1ST REPETITION

DETECTED/UNDETECTED A= UNDETECTED AFTER 8 REPETITIONS

60

50

40

30

FETSTO

-.---.--..- - --.. -- --L
10 60 80 140

NO. OF EXECUTED INSTRUCTIONS

FIG!JRE 11 DETECTED COtlBINED FAULTS VS. NO.OF EXECUTED INSTRUCTIONS
(GATE-LEVEL FAULTS)

60

50

40

30

20

10

0
FIGURE 12 DETECTED COMBINED FAULTS VS. NO. OF EXECUTED INSTRUCTIONS

(COMPONENT-LEVEL FAULTS)

FETSTO

A .
ADDSUB

A

O= DETECTED IN 1ST REPETITION

A = UNDETECTED AFTER 8 REPETITIONS

.---- -.-.... --_- -.-. -.-- ._. ..--.---..--- --.--. ------ ___-

10 60 80 140

NO. OF EXECUTED INSTRUCTIONS

ADDSUB

FIB

QUAD

SERCOM

LINCON

6 3

11 4

11 3

87 12

59 12

147 j 76

ADD AND
SUBTRACT

1

3

3

31

18

20

NSTRUCTION -

BRANCH

2

2

4

38

24

39

Note: This table is based upon one pass through the main program.

GATE-LEVEL

PERCENT
DETECTED

1st PERCENT
REPETITION UNDETECTED

29.9 61.7

33.5 59.5

35.0 58.2

43.2 53.3

39.5 60.5

51.7 48.3

COMPONEI T LEVEL

PERCENT
DETECTED

1st
REPETITION

PERCENT
UNDETECTEI

35.5

32.3

28.0

23.5

35.3

23.5

51.3

57.0

61.3

71.8

64.8

76.5

INSTRUCTION MIX versus DETECTION in PHASE I EXPERIMENTS

Table 19

-

7.0 ANALYSIS OF UNDETECTED FAULTS

7.1 Phase I Experiments

Because of the large numbers of undetected faults in the Phase I experi-
ments it was not practicable to determine why each undetected fault was not
detected. However, from the breakdown of faults by partitions, from the nature
of the Phase I programs and from the analysis of undetected faults in the
Phase II experiments it is possible to assess, in general terms, why faults were
not detected in the Phase I experiments.

7.1.1 Undetected Faults in Phase I

l From the Phase I latency distributions of Section 5 it can be seen that
most undetected faults occurred in the micromemory (i.e., Partition jyY5).
This was the result of the limited instruction sets used by the Phase I
programs and the large proportion of industinguishable faults contained
in the micromemory. As an example, the BDX-930 contains 79 types of
macroinstructions but no Phase I program used more than 10. Moreover the
Self-Test program, which used almost the entire instruction set, allowed
41 undetected faults of the micromemory of which 33 were indistinguisha-
ble. Thus, about 80X of all micromemory faults are indistinguishable.

o The 2901 chips were another prime source of undetected faults, as can be
seen from the latency distribution for Partition f4. Excluding indis-
tinguishable faults, these faults-are associated with the 2901 RAM which
contains the 16 arithmetic registers. The Phase I programs only exer-
cised 2 or 3 of these registers so it is not surprising that faults in
the unused registers were undetected.

7.2 Phase II Experiments

Every undetected fault in the Phase II gate-level experiment was analyzed
to determine why it was not detected. This turned out to be an exceedingly
dtfficult and tedious task that required an intimate knowledge of the computer
and its operation. As an indication of the magnitude of the task, out of the
300 faults injected, 102 were undetected. Out of the 102 undetected faults 71
were identified as indistinguishable. This, however, did not lessen the task
since indistinguishable faults were themselves, difficult to identify.

137

7.2.1 Undetected Faults in Phase II

l The gate-level undetected faults were distributed over the partitions as
follows:

PARTITION DISTINGUISHABLE INDISTINGUISHABLE TOTAL

t 4 2 6

2

3 16 16

5 a 33

6 3 - 5 a -
31 102

e The micromemory contained the largest number of indistinguishable faults.
This was due to the following:

l 3 bits of every 56-bit microword were unused.

l 100 out of 512 microwords were spares.

l Approximately 10 of 56 bits in a microword are used in executing an in-
struction; the remaining bits whether faulted or not, are effectively
ignored.

Indistinguishable faults in the micromemory were especially difficult
to identify. The problem is that an unused but faulted bit violates
the ground rules of the hardware design and the resultant effects are,
therefore, unanticipated. To ascertain the effects of such a bit it is
necessary to consider all possible scenarios in which the faulted mi-
croword is used and track the effects of the faulted bit in each in-
stance. In the present study only the most obvious scenarios were
analysed. Even so, it required an engineer with considerable expertise
in the hardware design to perform the task.

l In Partition $1 the 4 distinguishable undetected faults were associated
with the most significant bits of the memory address register. These
were faults that would have prevented access to memory locations not
accessed by the Self-Test program.

l In Partition #2 the 7 distinguishable, undetected faults affected the
program counter (3), the multiplexer that selected either the program
counter or the temporary register (Z), and the generation of I/O
strobes (2).

138

As with the memory address register, the faults affecting the program
counter would have prevented the counter from addressing memory not accessed
by the Self-Test program. The multiplexer faults caused the temporary register
to be selected instead of the program counter. The contents of these registers
are identical during the Self-Test program.

l In Partition #3 there were no undetected, distinguishable faults. How-
ever, all faults that affected the power-on sequence and were not de-
tected, were designated as indistinguishable. Other indistinguishable
faults affected the unused carry bits of registers.

l In Partition #4 the 9 distinguishable, undetected faults affected the
upper arithmetic registers (7) and the register carry bits (2). The
Self-Test program did not sufficiently exercise the bit patterns in the
upper arithmetic registers.

l In Partition #5 the 8 distinguishable, undetected faults were the result
of not sufficiently exercising the microinstruction set. Because of
the very large number of variations a thorough test of the micromemory is
extremely difficult to achieve. In the future, processors should incor-
porate a micromemory sum check for this purpose.

o In Partition #6 the 3 distinguiihable, undetected faults affected the
"jump relative' instructions which were not exercised by the Self-Test
program. Again, it is extremely difficult to exercise these instruc-
tions in every possible variation.

7.3 Gate-Level versus Component-Level Faults

A detailed analysis of the undetected failures indicated that component-
level faults (i.e., faults at the device pins) are relatively easy to detect.
In fact, with a little extra care in the Self-Test design there would have been
no undetected component-level faults. It should be noted, in this regard, that
no effort was made to modify the Self-Test on the basis of trial runs; the
initial Self-Test program remained unchanged throughout the study.

The ease of fault detection at the component-level is not surprising when
one considers that a single pin is used in a variety of operations and conse-
quently, will affect many diverse operations when faulted. Two examples are
(1) the output bits of a microword and (2) the 2901 arithmetic register data
outputs. A fault of a microword pin-out will affect that bit position in every
microword. Such a fault will surely be detected whenever a microinstruction
uses the complementary value of the faulted bit. In the case of the arithmetic
registers, it is not possible to fail a bit of one of the 16 registers without,
at the same time, failing this bit in all arithmetic registers. Thus, if the
faulted bit is suitably exercised by at least one arithmetic register the fault
will be detected.

It may be conjectured that, by injecting faults into the approximately 1200
pins of the BDX-930, an efficient self-test could be designed to achieve 100%
detection of component-level faults.

139

The major obstacle to detection of gate-level faults is their data-depen-
dence. A faulted gate node may not manifest itself at a pin-out unless it is
exercised by an appropriate combination of input and internal state. In parti-
cular, the fault may not show-up during a test because the test did not create
the correct conditions. We note, also that such faults are exceedingly diffi-
cult to analyze.

140

8.0 UNIPROCESSOR BIT

In the present study faults were limited to the central processor unit of
the avionics processor.
entire processor.

In practice, however, fault analysis must include the
In this section methods of detecting faults which occur

elsewhere in the processor are examined.

An avionics processor customarily contains a built-in-test (Bit) proce-
dure for fault detection and identification of faulted components. A typical
Bit procedure consists of applying stimuli to the processor circuitry and
determining whether the resultant responses at designated test points are
correct. A Bit procedure which utilizes only the resources of a single pro-
cessor is referred to as a "Uniprocessor Bit".

There are typically three types of uniprocessor Bit: Bit to detect
faults 1) prior to take-off, 2) for maintenance purposes and 3) inflight.
Thedifferences are mainly in the coverage and isolation requirements, time
available to complete the test and the inclusion or exclusion of other sub-
systems such as sensors and actuators. In the present discussion we will
consider only inflight Bit although the methodology is general and applies
more or less verbatim to all types of Bit.

Control System Scenario

In this scenario the purpose of inflight Bit is to eliminate a channel
of redundancy. The configuration is triplex consisting of three identical
processors with dedicated sensors.

The system is designed to maximize survivability subject to the constraint
of three channels. This is achieved by taking full advantage of the inherent
self-detection capability of each processor. When a processor detects a fail-
ure of itself it will either disengage itself from the affected axis but other-
wise continue all other control functions and computations or, if it is a com-
putational failure which requires data from the other channels for detection,
will select the correct data and use it in all other control computations.
This strategy localizes the effects of a failure and allows the processor to
perform those remaining control functions and computations that are unaffected
by the failure. If the processor cannot detect its own failure and take
correct action then the other processors will cause the errant processor to
be disengaged from all control axes via dedicated failure logic.

If maximum survivability is to be obtained it is essential not only to
detect but isolate a second failure to the failed processor. The self-detection
capability of each processor insures that a significant proportion of second
failures may be detected and isolated to the offending processor without the
need for comparison-monitoring. For those faults that require comparison-
monitoring for their detection, isolation is achieved by executing an on-line

141

self-test program in each of the contending processors. This application of
self-test is exactly the same as described in Section 4.6.

Survivability Benefits of Infliqht Bit

Inflight Bit is comprised of tests which are 1) conducted as part of
normal inflight redundancy management,
3) initiated by processor interrupt.

2) callable by the software program or
Let us assume that the first failure

resulted in complete loss of the affected processor. Actually, this is a con-
servative assumption since the fault might have been isolated to the affected
axis by the faulty processor. Upon the occurrence of a second fault in one
of the remaining processors, which cannot be isolated by the errant processor
by normal redundancy management procedures or by a callable subroutine, then
the non-faulted, and perhaps even the faulted processor, call for the initia-
tion of an interrupt. In this event both processors are interrupted (subse-
quent interrupts are, thereafter, inhibited) to execute an on-line self-test
which includes the cpu and portions of critical memory. During execution of
this self-test all control law computations are suspended. If .the faulty
processor detects its own fault then it is disengaged from the system and the
non-faulted processor assumes complete control. Inability of the faulty pro-
cessor to detect its own fault is assumed to result in loss of control.

If A = failure rate

T= duration of a

1 - a = second fa

then
9

of a processor

flight

ilure coverage

1) 3 (XT)‘ CL = probability of loss of control with inflight bit,

2) 3 (XT)' = probability of loss of control without inflight bit

Comparing (1) and (2), it can be seen that inflight Bit improves survivability
by the factor l/a. In many control applications this is sufficient to justify
the elimination of a redundant processor.

Scope of Inflight Bit

An examination of the inflight Bit scenario indicates that the procedures
for isolating the second failure rely entirely on the resources of a single
processor. The differences between inflight Bit and conventional preflight
Bit are:

142

1) Inflight Bit is initiated by a miscomparison whereas conventional Bit
is initiated by an external command.

2) Inflight Bit is severely constrained by time: it must detect the
fault before-it adversely affects the aircraft and in such a way
that the processor's ability to control the aircraft is not signifi-
cantly diminished. As a consequence, inflight Bit does not exercise
sensors or actuators or other aircraft subsystems.

As an indication of the scope of inflight Bit the critical components of
a typical avionics processor are identified in Table 20along with their corres-
ponding failure rates*. It is noted that only loss of critical components
affects survivability. Thus, the failure rate of (1) and (2) refer to critical
components, only. In the target processor of Table20 critical components
comprise about 82% of the total processor.

Referring to Table 20it can be seen that the cpu comprises 10.76% of the
critical components. If

ll - a = coverage of the cpu

and l2 - a = coverage of all other critical components

then the total coverage of critical components is

3)1-cl = 0.1076 (1 - al) + 0.8924 (1 - 02).

Fault Detection Procedures of Inflight Bit

A detailed discussion of the fault detection procedures of inflight Bit
is beyond the scope of this study. The treatment will be limited to a general
survey. Table21indicates the principal tests used to detect faults in selected
components. These tests include:

1) CPU Self-Test

The reader is already familiar with this test.

2) Watchdog Timer

The watchdog timer is a frequency sensitive circuit which "times-out"
unless it is updated by a toggle bit at a fixed frequency. The toggle
bit alternates between logic 0 and logic 1 and is supplied by the
software program. One of its uses is to detect variations of the
real-time clock which-exceed a specified threshold. The principal
use, however, is to detect a jump out of the program caused either
by a hardware fault or a software error, either of which prevents
update of the toggle.

* From MIL-HDBK 217B, Notice 2.

143

6)

7)

8)

Parity

The program and scratchpad memories contain an extra bit in each word
for parity. The parity is checked, by hardware, after every memory
read. A failure of parity results either in an interrupt or the
setting of a flag.

Memory Sum

The "read-only" memories are subdivided into 1K blocks and the sum
of each block is precomputed and stored. Their sums can be checked
periodically or as required.

RAM Addressing

These procedures test column addressing, row addressing and block
addressing for each 1K block of RAM. The tests completely check the
row and column decoders within each block of RAM.

Wrap-Arounds (Analog Signals)

The analog outputs at the sample and holds and the valve drive "
amplifiers are fed-back as analog inputs and checked against the
digital commands.

Bias Inputs to Multiplexers

Each analog input multiplexer contains a bias input which is settable
by software. The bias inputs are located at selected pins in such
a way that a faulty address will input a signal other than a bias
or at least one multiplexer.

Reconfiguration

sensor miscompares and it cannot be isolated to a
I/O circuitry both processors cal 1 for a reconfigured

control law which does not use the affected sensor.

When a critical
portion of the

Inflight Bit Design Methodology and Validation

The methodology of the Bit design is as follows:

1) Identify potentially critical components based upon

l anticipated function of the device
o projected failure modes and effects

If the criticality of a device is doubtful, assume it is critical.

144

2)

3)

4)

5)

6)

Identify the failure modes of each critical device at the device-level.

Identify the effects of each failure mode and assess its criticality.

Associate a probability of occurrence with each critical failure
mode. Disqualify non-critical faults and reduce the failure rate of
the device accordingly.

For each critical failure mode establish a failure detection procedure
based upon the anticipated failure effects. This procedure may con-
sist of a combination of software and additional hardware (e.g., the
addition of wrap-arounds).

Estimate the level of coverage for each critical device and for the
total critical system.

following this procedure the designer should emphasize components with -. In
relatively high failure rates; otherwise a disproportionate effort could be
placed on detecting faults with small probabilities of occurrence.

The validation of Bit coverage consists, essentially, in an independent
assessment of steps(l) through (6). This assessment is made difficult by
several factors:

l The number of possible responses of a digital circuit is large.

l The detection of most faults is dependent on the operating system
software; the analyst must be familiar with the failure detection
procedures which are implemented by that software.

These difficulties were overcome, at least for the CPU, by emulation
using the actual self-test software. The difficulties remain, however, for
the rest of the system which constitutes approximatly 90% of the total criti-
cal hardware.

145

TABLE 20

FAILURE RATES OF CRITICAL COMPONENTS

COMPONENT FAILURE RATE (x~O-~)/HR.

CPU 42.94
Real Time Clock 2.81
Interrupt Logic 4.54
Program Memory 9.71
Scratchpad Memory 15.62
Memory Mapped Discretes 1.44
Memory Parity 7.82
I/O Controller (Sequencer & File Memory) 11.052
Intercomputer Data Links 29.592
AC/DC Inputs 20.697
Input Multiplexers & Ampl. 8.58
AD Converter 1.92
Input Discretes 9.11
DA Converter 5.08
Valve Drive Amplifiers 8.04
Sample & Hold Circuits 3.59
Output Discretes 15.53
Failure Logic 19.63
Power Supply 21.86
Misc. 0.22
CPU PC Board/Connector 34.4
Memory PC Board/Connector 33.15
Analog I/O PC Board/Connector 23.2
I/O Controller PC Board/Connector 19.81
Servo Ampl. PC Board/Connector 26.53
Harness Assy 22.15

Total Critical 399.021

Total Components 487.19

Critical = 0 82
Total '

146

il

COMPONENT

1) CPU

2) Real Time Clock

3) Program Memory

4) Scratchpad Memory

TABLE 21

IF-FLIGHT BIT TEST PROCEDURES

5) DA, AD Converters
Sample and Hold Circuits
Valve Drive Amplifiers

6) Input Multiplexers

7) Discrete Inputs, Outputs

8a) I/O Controller Sequencer

8b) I/O Controller File Memory

9) Intercomputer Data Links

10) AC, DC Inputs

11) PC Boards and Connectors

12) Power Supply

METHOD OF FAILURE DETECTION

1) CPU Self-Test

2) Watchdog Timer

3) Parity & Memory Sum Test

4) Parity
Redundant Memory
Addressing and Bit Pattern Tests

5) Wrap-arounds

6) Bias Inputs, Patterns of Faults

7) Wrap-arounds
Patterns of Faults

8a) Patterns of Faults

8b) Parity Tests
Memory Sum Test

9) Not detectable

10) Reasonableness and Reconfiguration

11) Detection dependent on affected
devices

12) Level Detectors

147

9.0 URN MODEL

9.1 Urn Model Description

Several models have been investigated in an attempt to characterize the dy-
namics of fault propagation in a digital computer. Although simplistic in their
assumptions, these models may, nevertheless, provide insight into this undoubt-
edly complex process. It has been conjectured (ref. 1) that the distribution of
latency can be modelled by analogy with balls in an urn. We prefer to employ a
different analogy although the resultant distributions are the same.

We postulate that the computer can be subdivided into three sets of mutual-
ly exclusive components Cl, C 2, C3 such that

Cl = Set of components randomly exercised by the program

c2 = Set of components continually exercised by the program

c3
= Set of components never exercised by the program.

We make the further assumption that a fault is detected if and only if the
faulted component is exercised. The scenario is that of an avionics computer
executing two software programs one of which is executed full-time and the
other, part-time. The components that are exercised by the full-time mode are
denoted by C2 and those exercised by the part-time mode by Cl. Neither the

full-time or part-time modes exercise components, C3.

We assume that the part-time mode is exercised randomly. If the unit of
time is a repetition of the full-time program then we postulate that the exci-
tation is Poisson-distributed in time with a = probability that the part-time
mode is exercised in a repetition of the full-time program.

Let X, = Failure rate of C, (Failures/hour)

x2 = Failure rate of C2 (Failures/hour)

I3 = Failure rate of C3 (Failures/hour)

x =
+ = A2 + x3 (Failures/hour)

We now derive the latency distribution given that a fault has just occurred.
The distribution is defined in terms of three parameters, a, P and Q. where

P = Probability that the fault is detected in the first repetition

given that it occurred in sets Cl or C2

QO = Probability that the fault is never detected.

148

Cl

It is easy to derive the following relationships:

+ x2 x3 1) PQ=l-Qo= x+x,QQ=T

x 2+a '1 x 2+ a '1
x x- x x

2) P = s .

If

pk = probability that the fault is detected in the k-th repetition and

not detected in a previous repetition, k = 1, 2, 3, n,

qn+l = Probability that the fault is not detected in the previous n

repetitions,

then

p1
x2 x1 =PoP=T+aT

p2
x1 = (1 - P) a p. = a (1 - a) x

3) :

Pi
= (1 ll - P) (1 - a)n-2 a PO = a (1 - a)n-l x , n = 2,3,...

Q)

qn+l
= Q,+ C

k = n+l
Pk = Q, + (1 - p) PO (1 - a?-'

x3 n '1 = -Jo- + (1 - a) x , n = 1,2,3,...

Observe that

.n

qn+l
+ c Pk = l, as expected.

k=l

In estimating the above distribution the number of repetitions will be
limited to eight. Then, the study will estimate the quantities

P" $9 -** *9 Pf3’ 49

for S-a-l, S-a-O and combined faults.

149

9.2 Generalized Urn Model

One of the deficiencies of the Urn Model is that it assumes that each fault
in set Cl is exercised with the same probability, a. If this is not the case

then the distribution cannot be represented by the Urn Model. This can be dem-
onstrated as follows.

Subdivide Cl into mutually exclusive sets C,,, C,2 with failure rates

91' +2' respectively, and such that

a. =
1

probability that the components of Cli are exercised in a repetition

of the full-time program, for i = 1,2.

Naturally %l + Xl2 = x.

In this case we easily derive

X2 +1 I12 p, = x + a, x + a2 x

p2 = al
%l %2

(1 - a,) x + a2 (1 - a21 x

4)
2 +1 2 I12 p3 = a, (1 - al) x + a2 (1 - a2) X'

. .

.
pk = al (1 - a,)

k-l '11
x + a2 (1 - a2)

k-l '12
x , k = 2,3,4,...

.

.

.

But, according to the Urn Model, the distribution should be representable in

the form

k-l '1
pk = a (1 - a) x , k = 2,3,...

However, there does not exist a value of "a" such that

a (1 - a) k-l '1 x = a, (1 - a,) k-l '11
-I- + a2 (1 - a2)k-1 +

for all values of k = 2,3,4,..., unless a, = 0 or a2 = 0 or a, = a2.

150

In a real processor it must be presumed that faults in set Cl cannot be

characterized by a single probability of detection. It is more likely that the
fault set produces a range of values from zero to one. If this is the case then
it would appear that the Urn Model is severely restricted in its applicability.
This is not to say that the model cannot provide a reasonably good description
of fault latency in a real processor. In fact, the results of Section 5 show
surprisingly good correlation between the model and the empirical distributions.
This correlation is more than a coincidence, as we will now demonstrate by a
comparison with a more elaborate and, hopefully, more realistic model.

9.2.1 An Alternate Model

The following derivation is informal and heuristic. No attempt will be
made to evaluate the resultant model in the present study. Our intention is'to
exhibit the characteristics of a more realistic model for comparison with the
Urn Model and as a baseline for future studies.

We associate with each fault in set Cl a probability of detection, "a",
where "a" can have any value on the interval 0 2 a 5 1. we postulate the exist-
ence of a function, g (a), such that

%

s
g(a) da = Y

a

where

Y = probability of occurrence of all faults which yield a value of "a"

on the interval a 2 a 2 B.

We observe that

g(a 1 da = X1 .

In the interests of simplicity we have idealized the processor in that we
assume a continuum of faults and an integrable function, g(a). In a real pro-
cessor the number of faults is finite and g(a) is actually a discrete function.

151

Now-let

0 = a0 g a1 2 a2 6 6 . . . a, = 1

be a partition of the interval 0 s a 2 1

and define

dai = ai - ai ,

dXi = g(ai) dais i = l,Z,...,n.

We note that

dXi = probability of occurrence of all faults which yield a value of "a"

on the interval ai 2 a 2 ai + dai.

If da1 -is sufficiently small we can assume that the faults corresponding to

the interval (ai, ai + dai) can be represented by a single probability of occur-

rence, a..
1

As a consequence, the Urn Model describes the latency distribution

of faults on these intervals. Thus, the latency distribution over the entire
interval is

x2 1 p, = x + x C aid11

p2 = i C ai (7 - ai) dAi

.

.
5) *

pn
= t C ai (1 - ai) n-1 dXi

x3+ ;
qn+l = X k = n+l pk .

152

If we replace dxi by g(ai) da1 and pass to the limit we obtain

1

x2 9
Pl=x+x

5
1 a g(a) da
+

0

ll
p2 = x la(l-

+
a) g(a) da

6) : . 1

+

5

1 a (1 - a) n-l
Pn = X

+
g(a) da, n = 2,3,4,...

x3+ ; qn+l = X k = n+l pk .

Again, we note that
1

qn+l
+ F Pk = 1 and

k=l
t g(a) da = 1.

Let us represent (6) using the quantities P and PO.

As before

5 x2 7) Po=T+T.

If we define S as the average value of 'a' defined by

1

i =

s
1 a g(a) da
5

0

then

x2 9
8) PPo=T+T:

153

Note the similarity with (2). Solving (7) and (8) for x gives

5 = (1 - PI PO
x .

1 -5

Substituting this into (6) gives

Pl = P PO

1
(1 -

9) P2=
PI PO

1 -ii 5
0

. . . 1
(1

P, =
- PI PO

1 -ii s
0

In the Urn Model we had

J-a(l-
xl

a) g(a) da

$a (1 - a) n-l
g(a) da.

1

1 ,_.-

5
+a (1 - a) n-l g(a) da = g (1 - a) n-l

1
0

since g(a) was a delta function at a = a'. Substituting this into (9) and we

obtain (3).

Equations (6) along with g(a) define the latency distribution. Regarding

this distribution we observe that it is monotonic non-increasing, i.e.,

pn I Pn*l' n = 2,3,4,...

This follows because

a (1 - aT2 g(a) 2 a (1 - a)n-' g(a).

154

9.2.2 Examples

We illustrate the model with several examples.

Example Rl

If g(a) is a delta function of magnitude Xl, i.e.,

g(a) = X1 6 (a - g)

then equations (6) reduce to those of the Urn Model.

Thus,

x2 + p1=7+S x

.

. .

10) p, = i (1 - Z)+' + x , n = 2,3,4,...

qn+l
x3 = 7 + (1 --;I" 5 A , n = 1,2,3,...

Example #2

Let g!a) = X1 for Olasl.

Then, from (6),

x2 +
q x & x

=-+

11) : 9
p;1 = &r x , n = 2,3,4,...

I3 1 I1
qn+l = X + .+r X' n = 1,2,3,...

155

Example #3

Let s(a) = 2 X1 a for 0 f a 2 1.

Then, from (6),

x2 4 +
p1= x+- 1-2.3 A

. .

12) l 4
Pn =

+
n (,, + l) (,., + 2) X, n = 2AL..

x3 =-+
qn+l X

2 x1
(n + 1) (n + 2) X ' " = 1,2,3,...

Example #4

Let g(a) = 2 x1 (1 - a), 0 2 a i 1.

Then, from (6),

h
I2 + =T+& x

. .

13) p' = 2 ll
n (n f 1) (n + 2) A ' n = 2,3,4,...

A3+2 x1
qn+l = X n+2 X'" = 1,2,3,...

9.2.3 Comparison of Models

It was stated previously that the correlation between the Urn Model and

the empirical distributions was more than a coincidence. We illustrate by

assum‘ing that Example 84 depicts the actual processor with

x1, l 3 IL .3 A3
x ' x , A = .4.

156 I

- ---.._-.. .__..... .--_.----- __.._ -.__-.- .__.. -_-._--- ._-_-_ -1

In this case

Pl = .4

P2 = -05

P3 = .03

'4)
P4 = .02

Ps = .0143

P6 = .0107

P7 = .0083

43 = .0066

49 = .46 .

Now let us fit the Urn Model to this distribution. We choose 5 X2
and "a" such that the Urn Model agrees with p,, X'X

and p2 and qg. The result is
easily shown to be

xl -- =
x -2238,

x2
-J- = .3246,

x3
x = .4516, a = .337, PO = .5484, P = .73.

If these values are substituted into (3) we obtain

Pl = .4

P2 = .os

p3 = .033

‘5)
pj = .022

P5 = .0146

t+j = .0097

P7 = .0064

p8 = .0042

qg = .46 .

157

Comparing (14) and (15) shows that the differences between the true and Urn
Model distributions are small. Clearly, it would require a very accurate statis-
tical analysis to distinguish between the two distributions. We note, inciden-
tally, that if the Urn Model had been used to estimate X1 the error would have

been 25.4%.

158

10.0 STATISTICAL ANALYSES

10.1 Introduction

As indicated previously, the principal objective of the study is to obtain
esitmates of fault coverage and fault latency in a typical avionics miniproces-
sor. Although the statistical experiments were carefully designed to yield high
accuracy and confidence for the least cost the estimates should not be taken too
literally. The reader is advised to exercise engineering judgement in interpret-
ing the results especially when inferring conclusions that depend upon small
differences in the estimates. The reason for caution is the uncertainty in the
assumptions underlying the study - assumptions which may, if incorrect or inac-
curate, contribute a far greater uncertainty to the results than the statisti-
cal analysis would imply.

For the record, the critical assumptions of the study are:

l From the standpoint of failure modes and effects every device can be rep-

resented by the manufacturer-supplied gate-level, equivalent circuit.

l Every fault can be represented as either a S-a-O or S-a-l at a gate node.

l The failure rate of each device is equally distributed over the gates of

the gate-level equivalent circuit.

l The failure rate of each gate is equally distributed over the nodes of

the gate.

l Memory failures are exclusively faults of single bits.

The assumption that S-a-O and S-a-l faults are equally likely is not criti-
cal since the experiments were conducted in such a way the the results can
easily be modified to reflect a change in this assumption.

Until additional data becomesavailablethe effects of these assumptions on
the estimates cannot be properly assessed. In the interim it must be said that
the results only pertain to a conjectured realization of the processor.

The statistical experiments (i.e., the number and distribution of faults)
are designed to extract as much information as practicable from each experiment
for a given set of faults. Thus, in addition to the principal fault coverage
and fault latency estimates, it was considered desirable to obtain these esti-
mates for each of the six partitions of the processor. These would provide a
basis for more detailed analysis of the fault detection process, and would iden-
tify components according to their failure detection coverage. Such data, even
if unused in the present study;would be available for future studies.

159

10.2 Estimators for Self-Test Coverage

The estimators for x, y and z are

1) x" = md
ii-

2) y*="d
ii

3) z*=md +"d
m+n

where

x, Y¶ 2 = probability that a S-a-O, S-a-l, combined fault is detected;

md’ “d = number of S-a-O, S-a-l faults detected;

m,n = number of S-a-O, S-a-l faults injected.

A more accurate estimate of t can be obtained if stratified sampling is

employed. For example, let

aX = proportion of S-a-O faults in the fault set of the processor

aY
= proportion of S-a-l faults in the fault set of the processor

where a, + a
Y

= 1.

If m and n are selected such that

m=axns n=aYn
where

n = total number of faults injected,

then

z* = a x*+a
X Y y*

is more accurate than (3) if x # y. Although stratified
tionally employed in the study-the actual selection resu
number of S-a-o and S-a-l faults.(*)

samplino was not inten-
lted in an almost equal

* In the selection process ax = a = 0.5, i.e., S-a-O a
Y

equally likely.

nd S-a-l faults were

160

10.3 Estimators for Latency

The estimators for xk, yk and zk are

X*= k mk
iii

4)
"k yk* = n

z*t
k mk + "k , k = 1,2,3,..., 8,

m+n

where

Xk’ Y k 3 'k = probability that a S-a-O, S-a-1,combined fault is

detected in the k-th repetition;

mk' "k = number of S-a-O, S-a-l faults detected in the k-th repetition.

With some abuse of terminology

X9’ Yg9 29 = probability

detected in

We note that x9 corresponds to

and zg are

we define

that a S-a-O, S-a-l, combined fault is not

the previous 8 repetitions.

qg of Section 9. The estimators for x9, yg

x9* =
m - ml - "2 - . . . - m8 = l - x1* - x2* - . . . - x8*

m

5) yg* = n - “1 - “2 - l *- - “8 = 1 - yl* - y2* - ... - y8*

n

zg* = mx*+ny* ', + n 9 = 1 - zl* - z2* - . . . - z8*‘

70.3.1 Corrections for Indistinguishable Faults

The occupancy probabilities xk, yk, zk assume that indistinguishable faults

have been disqualified. As indicated previously, the fault set set will contain
a certain proportion of indistinguishable faults, y. When such faults are

present the occupancy probabilities are xlk, ylk, 21k where

X1 k = Xk (1 -y)

1
yk = Yk t1 -Y)

z1 =2 k (1 -y), k = 1,2 ,..., 8

61
xl; = xg (1 -Y) + Y

Y1g = Yg (1 -VI + Y

z1 9 = 29 (1 -VI + Y,

assuming that indistinguishable faults are uniformly distributed over S-a-O
and S-a-l faults. Since indistinguishable faults were not disqualified in
the Phase I experiments the estimates actually obtained are those of

x1
k' y

'k and 21k.

10.4 Estimators for Urn Model Parameters

The method of estimation will be described for S-a-O latency distributions.
With an obvious change in parameters, e.g., mk, the estimates can be applied to

S-a-l and combined latency distributions, as well.

The method is based on the principal of maximum likelihood. We note that
mk S-a-o faults are detected in the k-th repetition. Accordingly, we seek Urn

Model parameters a, P and PO that maximize the likelihood function

ml m2 m8 m9
L = P1 P2 l -* f+3 qg

162

--- -.-.... -..-.-.-. ..-_. -..._.....__.__ ..- .-__ _. .- . -.-..- -- ..-- - ..-.. --... ---.-

where

p2 = (1 - P) a PO

pg = (1 - P) a PO (1 - a)

7) . . .

p8 = (1 -P) a PO (1 - a)6

q9 = Q, + (1 - P) PO (1 - a)7

and mg = m - ml - m2 - . . . - m 8

(See Section 9.1 for a definition of the Urn Model).

The maximum likelihood estimators for a, P and PO are obtained as the

solution of

It can be shown that the solution to the aL/JPO = 0 equation is:

8
C Illi - ml .(l - a*)7

8) po*d=l .
9
c 1 - (1 - a*)7

i=l I

The solution to the >L/JP = 0 equation is:
I- 7

m. 1 L 1 - (1 - a*)7
9) P* =

1
.

8
c mi - ml (1 -.a*)7

i=l

163

Solving the aL/aa = 0 equation for the quantity (1 - a*) yields the

following equation:

A (1 - a*)8 + B (1 - a*)7 +C(l- a*) + D f 0

where
8 8

A=-8 C mi+ C
i=l i=l

imi + 7 mi

8 8
B = 9 C mi - C

i 1 i 1
imi - 8 mi

t =

8 8
C 5 C mi - C imi

i=l i=l

8 8
D = -2 C mi + c imi + ml .

i=l i=l

The roots of this equation are determined from a root solving routine, and

substituted into (8) and (9) to obtain PO* and P*.

10.5 Accuracy and Confidence of Coverage Estimates

It can be shown (ref. 2) that

10) E (x") = x, E (y") = y, E (r*) = z

and

E ((x - x*)*) = x(1 xl m-

11) E ((y - Y*)*) = y (1 - Y)
n

E ((z - z*)*) =
z (1 - 2)

B

where

E (-1 = expected value of (.).

164

For m, n and N sufficiently large the estimators x*, y* and z* are approximately
Gaussian with means and variances given by (10) and (ll), respectively.

The following derivation of accuracy and confidence is general and applies
to any quantity, x, estimated by the method of Sectionl0.2. As before,

x* = estimate of x

m = sample size.

It is well-known (See (ref. 3), for example) that the probability

that x lies between the limits

f .2 m

m + A2
L

x*+&+x
I

li

x* (1 - x*) +
m $

*)

or, equivalently, that x* lies between the limits

12) x+x w
J

is equal to Y, where Y is the area of the standard Gaussian distribution

between -X and A. From (11) we may say that the error in the estimate, x*, is

13) c = h
\i

x (1 - xl
m

with a confidence level of y.

Equation (13) is an ellipse in x. Table22gives a tabulation of

EF versus x for a confidence level of y = .95.

It is often convenient to obtain error estimates that are independent of x.
From (13) it can be seen that the maximum error occurs when x = l/2. Table 23
gives a tabulation of this maximum error versus sample size and confidence lev-
el. It is noted that the maximum error can be extremely conservative.

165

10.6 Accuracy and Confidence of Latency Estimates

In this section we derive accuracy and confidence levels for S-a-O latency
estimates. Again, the results are easily extrapolated to S-a-l and combined
estimates.

It is shown
C

(ref. 3), pg 2147
1

that

14) E (xk*) = Xk

15) E ((xk - xk*)*) = 'k (' - 'k)
m

16) E ((Xi - xi*) (xj - xj*)) = - 'ixj , i + j
m

for i, j, k = 1, 2, 3, 9.

From (14) and (15) it can be seen that the accuracy and confidence level of
a single estimate, x*~, is identical to that obtained for the coverage estimate

x* in the previous section.

To obtain a measure of "goodness of fit" for the entire distribution we
observe that, for m sufficiently large, the variable

9
17) x2 = c -!!!- (xk - xk*)*

k = 1 'k

is distributed in a chi-square distribution with 8 degrees-of-freedom (see

Ref (31, page 419).

2
If x 1-y denotes the 1 - y level of x2, i.e.,

then the probability that a point, (x1*, x2*,...,x8*) lies inside the

ellipsoid

166

2 9

18) x l-y = k f 1 Xk m (Xk - xk*)*

is equal to y.

In principle, we can obtain error bounds for the estimates, xk*, from (18).
There are two reasons why we do not do so:

1) A chi-square fit generally requires that m xk 2 10 for all xk, a'condi-

'tion that is not satisfied for the latency cells k=4,5,6,7,8.

2) The Phase I experiments indicate that the latency distributions are
concentrated at the 1st and 9th cells, the other cells contributing
less than 10% to the total. Thus, the occupancy probabilities of the
1st and 9th cells are the most significant.

If we group the intermediate cells into a single cell and denote the occu-
pancy probability by p and its estimate by p* then, for m sufficiently large,
the variable

19) x*l-y = $ (x1 - xl*)* + e (x9 - x9*1* +; (p - p*)*

is chi-square distributed with 2 degrees-of-freedom. We note that

p = 1 - x1 - x9

p*=1-x1*-x9* .

Equation (11) represents a skewed ellipse in the plane of x1*, x9*.

We can simplify the error estimates by observing that the ellipse of

(19) lies inside of the ellipse

2 2
20) x Joy = +f (Xl - x1*) + c (xg - xg *I* .

From (20) we conclude that the errors (xl - x1*), (x9 - x9*) simultane-

ously lie on the intervals

167

21) - Ek 5 (xk, - xk*) 2 ck

where

2
22) tzk = J x l-y 'k , k = 1,9

m

with a probability not less than y.

It is interesting to compare these errors if the xk were tested indepen-

dently. In this case the errors are

23) ~~ = X Xk I1 - 'k) , k =1,9 .
m

If we select y = .95 (95% level) then

x - 1.96, ~~~~5 = 5.99 and (22), (23) reduce to

24)

EK
= 1.96 , respectively.

10.7 Accuracy and Confidence of URN Model Parameter Estimates

Let p1 denote the probability that a fault is detected in the i-th repeti-

tion, i = 1, 2, 8 and qg the probability that a fault is not detected in

the previous 8 repetitions. Then the multinomial sampling distribution is

Uf V2
25) f = Pi p2

u3 v9
l ‘- P8 qg

where the pi and og are defined as in Section 10.4 and the points P = (pl, u2,

. . . . ug) are taken from the set

168

(1 so s-.*,0)

(OS1 ,o ,-so)

.

.

(0,0..:.,0,1).

We note that

8
c

if1
Pi + qg = 1.

In order to obtain error bounds for the Urn Model parameter estimates

we invoke a theorem from (Ref. 2), page 212:

Theorem

The maximum'likelihood estimators el*, e2*, e3* for the sampling distri-

bution f(u, el, e2, 6,) from samples of size n are, for large samples, approxi-

mately distributed by the multivariate Gaussian distribution with means C+,

e2' O3 and variances and covariances, aiJ, where 1 I~ijl1 is the inverse of

the matrix whose elements are

26) aij = - n E , i, j = 1,2,3.

When applied to the Urn Model

e1 = P

El* = PO

e3 = a

and q*, e2*, e3 *, are the estimated values of el, e2 and e3, respectively.

169

The elements of the covariance matrix [Ioijl 1 were tabulated for the Phase I

experiments and the results are given in Table 16.

A much simplified estimate of the errors can be obtained by employing an
approximation that was suggested in (ref. 1). There, it was assumed that

qg = 1 - PO = Q,.

In other words, detectable faults are always detected in the first 8 repe-
titions. From (7) this is equivalent to the approximation

27) (1 - P) PO (1 - a)7 = 0.

If this substitution is made in the likelihood function, L, then the resultant
estimates are, for S-a-O faults,

1 i p*t-
0 m i=l mf

28)

m.
p* = 7

8
C mi

i=l

8

. C Illi - ml

a* P
--

c
i=l

imf - C lllf
f=l

The experimental results confirm the accuracy of those approximations*
(see Table 15). More interesting, however, are the resultant error covarian-
ces. When the approximation of (27) is made we obtain

* At least for the distributions obtained in the study.

170

E(V _ p*)$ p c; ; p)
0

29) E((PO - PO*)*)= '0 (' - '0)

and the cross-covariances vanish. Thus the estimates are independent and, at

a confidence level of y, the errors are, for P, PO, a, respectively,

tihere X isas defined in Sectioni0.5. As an indication of the error magnitudes,

for a typical fit (See FETSTO results, Table 151,

P z .781

pO y .383

a y .464

171

which result in the following errors at a 95% confidence level:

EP = .041 (5.2%)

E-
rO

= .030 (7.8%)

E a = .073 (15.7%).

The reader is reminded that these estimates are only valid if the Urn Model
correctly represents the distribution. The example at the end of Section 9
illustrates the uncertainty in estimated variables when an incorrect model is
used.

172

TABLE 22

Error Ellipse for a Confidence Level of y = .95

em = \I x (1 - xl

X

0.0 0
.427 .05
.588 .l
.70 .15
.784 .2
,849 .25
.898 .3
.935 .35

.960 .4

.975 .45

.98 .5

.975 .55

.96 .6
,935 .65
.898 .7

.849 .75

.784 .8

.7 .85

.588 .9

.427 .95

0.0 1.0

173

TABLE 23

MAXIMUM ERROR VERSUS SAMPLE SIZE AND CONFIDENCEm&P,‘EL

.6 .03 .025 .021 .017

.7 .037 .03 1 .0&6-1._ .021

.8 .046 .038 .033 .027

.9 .058- .0+8 .P41.- 034 -L

.95 .069 .056 .M? .04 _

1000

-.013

.017

.021

-026

.031

11.0 EMULATION DESCRIPTION

11.1 BDX-930 Architecture

The BDX-930 Digital Processor is a microprogrammed, pipelined machine de-
signed around the AMD2901A four bit microprocessor slice. The machine contains
sixteen general purpose registers of which four registers may be loaded direct-
ly from memory and two registers may be used as base registers. One register is
used as a stack pointer.

The program counter and memory address register are contained in the 9407,
a chip designed to perform memory address arithmetic. Along with a temporary
register contained on the same chip, the BDX-930 is able to perform four basic
addressing modes involving three registers and various instruction fields.

The machine contains three memory interface data registers which are used
to input and output memory data. There are also a number of one bit status flag
registers that can be manipulated under program control. This includes the Fl
and F2 registers, which are hardware flags, and the interrupt enable, overflow
status registers. There also exist the indirect and link registers used by the
microcode for branching.

The microcode is contained in seven proms and a pipeline register is in-
cluded for simultaneous microcode fetch and decoding. Various internal and
external conditions can affect microcode branching as selected by the microcode
itself and a microcode control prom. In addition to a rich instruction set which
includes 16 and 32 bit fixed point operations, there is a test set interface in
the microcode. A selectable saturate mode is available which limits the results
of arithmetic operations when overflow or underflow occur.

For simulation purposes, the computer has been divided into six partitions,
consisting of the following principal devices:

Partition 1 - Address Processor

l 4 - 9407 Memory Address Processor Equivalent Circuit

l Selector Chips to Multiplex Memory Address Source

.4- 54LS352 4:l

l 2- 54LS158 2:l

Partition 2 - Data and Status Registers

a2 - 54LS374 Memory Input Buffer Register

02 - 54LS374 Memory Output Buffer Register

e2 - 54LS374 Next Instruction Register

a3 - 54LS113 Single Bit Registers for

e overflow

e indirect addressing

l link (bit carry for divide)

l interrupt mode

l Fl and F2

a*- 54LS153 Select Overflow, Link, and Indirect Bit Sources.
02 - 54LS245 octal bus transceivers
Partition 3 - Microcontroller

l Pipeline Register

.4- 54LS273 octal latch

l 4- 54LS175 quad latch

el- 54LS374 octal latch with tri-state

ol- 54LS273 External Signal Synchronizer

l 3- 54LS151 Selectors 8:1 for Branch Conditions

ol- 54LS169 Counter for Shift and Multiply Instructions

ol- 54LS169 Counter for Multiple Register Load-Store Instructions

l l - 54LS377 Instruction Register

ol- 54LS253 Microcode Branch Selector

Partition 4 - Execute

.4- AMD2901A 4 Bit Slice ALU

01 - AMD2902 Lookahead Carry

.2- 54LS153 Selector 4:l Register Selectors

ol- 54LS253 Selector 4:l Shift Bit Selector

Partition 5 - Microcode

l 7- 54S472 Proms with 56 Bit Wide Microcode

Partition 6 - Control Proms

ol- 545472 Prom Microcode Start Address for Macroinstructions

ol- 54S288 Prom Control for Microcode Branch

176

Instruction execution is accomplished by a pipelined architecture; various
stages of execution occur simultaneously for a sequence of instructions.
Consider, for instance, four instructions, A,B,C,D, to be executed in sequence.
During the same clock cycle it is possible for the program counter to be incre-
mented to point to instruction D, while instruction C is being fetched, instruc-
tion B is being decoded and instruction A is being executed.

With this level of parellelism, it will be noted that when the execution
phase of an instruction is one clock cycle, the average time to perform the en-
tire instruction will be one clock cycle. This relation can better be under-
stood by referring to Table 24.

It should also be noted that the partitioning of the BDX-930 is roughly
broken up into the stages of the pipe: - address, fetch, decode, and execute.
These stages of the pipe are joined by various buses throughout the CPU. These
buses are formed from tri-state logic and some are bidirectional. An enumera-
tion of the major buses includes

0 Y - Connects the output of the ALU (AMD2901A) to the address processor
and the output register. In addition, it connects the output of the next
instruction buffer to the start address register and instruction register.

.D - Connects the memory data register and the program counter to the in-
put of the ALU.

l DAT - Bidirectional bus connecting memory and I/O to the memory data
register and output register.

l M - Bidirectional memory data bus

l MAR - Memory Address Bus

0 u - Microcode Bus

l IR - Instruction Register

A list of the devices used in the BDX-930 and their failure rates is given
in Table 25. The data was obtained from MIL-HOBK127B, Notice 2.

11.2 Description of the Emulator

The emulation includes the components of the CPU (Central Processor Unit),
scratchpad memory and those portions of the program memory containing the six
target programs and the target self-test program. The emulation is derived
from the circuit schematics. Each device is represented by a gate-level equiv-
alent circuit supplied by the chip manufacturer. It was found that six types of
gates were sufficient to represent any device, e.g., NAND, AND, OR, NOT, NOR,
EXCLUSIVE OR. Table26 gives the number of equivalent gates in each device of
the CPU. In all, 5,100 gates were required. In the interests of reducing exe-
cution time, it was not expedient to emulate all components at the gate-level.
The following elements are represented at the functional-level:

program memory
scratchpad memory
microprogram and control memories
16 general purpose arithmetic registers.

177

The emulation did not include the direct memory access unit (DMA) or any of
the devices of the I/O. The emulated devices of the CPU are shown in Figure 13.

Faults were injected into all devices except the program and scratchpad
memories. Because the program memory is "read-only", no processor, faulted or
not, is permitted to write into this memory. However, even though the scratch-
pad memory is never faulted, a faulty processor can write into it. As a conse-
quence, in the parallel mode of operation where 36 processors are simultaneously
emulated, the corresponding 36 scratchpad memories are also emulated.

No delay has been simulated between logic gates. It is assumed that all
combinational logic is stable at the output the instant an input pattern is ap-
plied to it. This means that each time the input is changed, the network need
only be evaluated once to supply the correct output pattern. Operating in this
manner is very time efficient, but puts stringent requirements on the order of
evaluation of the gates. To be able to meet these requirements, the logic' is
levelized, i.e., placed in groups or levels that represent the proper order of
evaluation.

The emulator utilizes the parallel method of logic simulation (see, for
instance, Seshu and Freeman (ref. 5), or Hardie and Suhocki (ref. 6)). The data
word of a PDP-10 contains 36 bits; each bit position is used to represent a dif-
ferent machine. The simplest gate operations are represented by a single Boolean
instruction; when the two inputs occupy the same bit positions in their respec-
tive words, the output also occupies this bit position. The advantage of this
technique is execution time savings. Typically, the amount of code necessary
to simulate 36 machines is of the same order as the amount of code necessary to
simulate only one machine. The BDX-930 description is contained in compiled
code, rather than in tables, which was also done for speed.

Certain portions of the machine, notably the memory elements, were repre-
sented at a functional level rather than a gate level. For microprogram memory,
two words of PDP-10 storage contain 56 bits of microstore; at micro memory fetch
time, these bits are retrieved from the proper address for each of the simulated
machines and combined to form suitable words to interface the gate portion of
the emulation. The ROM portion of main memory is handled in the same manner.
Writable store contains a routine to translate the gate inputs into consecutive
PDP-10 storage words so that there is one copy of writable storage for each
machine being emulated. On reading this storage, the process is reversed.

In a typical run of the emulator, 36 different machines are exercised; 35
faulted machines and one good machine. Each faulted machine is assumed to have
a single solid fault at one node, either stuck-at-one (S-a-l) or stuck-at-zero
(S-a-O). The falults are injected by defining extra qates at each node, an AND
gate for stuck at zero and an OR gate for stuck at one. A typical AND gate
using this technique is shown in Figure 14.

178

To demonstrate the use of this technique for injecting and emulating the
propagation of gate-level faults, refer to Figure 15. In the figure, a typical
gate-level operation is shown involving four gates. Logic is levelized in terms
of two levels. Let us assume that the input has the value '10' on it, and we
would like to simulate 6 faults (S-a-O at leads 3,4, and 6 and S-a-l at leads
3,4, and 5) in the circuit. The first step would be to define two PDP-10 com-
puter words to represent the inputs at each lead. Bit position 0 would repre-
sent the unfaulted machine while positions l-6 would represent the faulted
ones. Next, fault words are defined for S-a-l and S-a-O faults at each node
and each node is assigned a word to contain the results of its operation.
First, the input faults are applied to the input words yielding words (1) and
(2). Then, the two buffer operations are performed. Buffer output faults are
applied yielding words (3) and (4). Note that (3) and (4) occupy the same phy-
sical storage as (1) and (2) yielding a memory efficient algorithm. The second
level is evaluated in much the same manner, yielding the results (5) and (6).
Table 27shows the value of the nodes for Figure 15.

An additional reduction in run-time can be achieved by observing that not
all gate faults are distinguishable at the gate output. For example, a S-a-O
fault on the input node of an AND gate is indistinguishable from a S-a-l fault
on the output node. As a consequence, if two or more indistinguishable faults
of the same gate are selected, only one fault will be emulated.

It will be noted that only one partition of the BDX-930 runs with faults
injected in each simulated run. The remaining partitions run 'true value', that
is, logic without fault injection capabilities.
in program execution.

This results in a time saving
When the entire emulator is run true-value, the execution

ratio between PDP-10 time and simulated time is 21,000:1, with faults injected
in one partition, this number is approximately 25,OOO:l. In order to achieve
these ratios, a number of problems had to be solved.

Stabilization -

The propagation of logic signals through a combinational logic network in-
volves many concurrent paths of travel; the value at the output of any particu-
lar gate is only stable after a certain interval. The inherently sequential ex-
ecution of a computer program presents a potential problem as to the order of
evaluation of gates. One approach to parallel operation in a sequential emulation
is, during each BDX-930 clock time, to evaluate the gates repeatedly until re-
evaluation produces no further change in state. It is desired to minimize pro-
gram execution time; therefore the number of times each logic gate is evaluated
should be minimized. If a particular sub-circuit is free of memory elements and
feedback paths, it need be evaluated only once. The order of analysis here is
critical, but not necessarily unique. Feedback elements represent a special
problem. For a simple R-S type flip flop, the proper output states can be
ascertained by evaluating each element, at most twice.

D-Latches

The edge-triggered D latches represent a much harder circuit to model.
The circuit diagram of such a latch is shown in Figure 16.

179

Operation of these circuits is dependent upon receivinq both the low and hi h
levels of the clock signal to trigger the latch. All of the combinational 4 ogic
in the BDX-930 requires only one evaluation per clock cycle. In the interest of
reducing execution time, the D latch in Figurel6awas replaced by the latch in
Figurel6bwhich is functionally equivalent, but requires only one evaluation
per clock cycle.

Tri-State Buses

In order to evaluate tri-state buses, it is necessary to replace them with
a gate equivalent circuit. Such an equivalent circuit is easy to synthesize in
the case of a wired-OR type circuit, but tri-state logic also may fail to a high
impedance state. In this case, any change on the line is particularly sluggish.
The last failure-free output on a tri-state line will exponentially approach the
high state as a function of wiring capacitance and other circuit parameters at
the time of the failure. This failure mode was not simulated: tri-state failure
modes are considered the same as wired-OR failure modes. The justification is
to avoid a failure mode that is random, and dependent on the past history of the
gate. The equivalent circuit is shown in Figure 17.

Serial-to-Parallel/Parallel-to-Serial

In a gate-level emulation each node is represented by a single word of the
host computer whereas,in a register-level emulation, a collection of nodes is so
represented. For example, a set of 16 nodes might represent the address bits of
memory data which, at the register-level , would be represented by a single, 16
bit word in the host computer. In an emulation which contains both gate-level
and register-level components, it is necessary, in passing from one level to
another, to convert the host computer words to compatible formats.

In the present emulation the following memory devices are represented at
the register-level:

microprogram (7, '54S472, 512 x 8 proms)

microprogram control (54S288, 32 x 8 proms)

macroinstruction start address (54S472, 512 x 8 proms)

main memory

The first 3 components are read-only proms which require a conversion of
the address nodes to register-level and data to gate-level. The main memory is
both ROM and RAM and this requires a conversion of both the address and data
nodes to register-level in the write cycle and address nodes to register-level
and data to gate-level in the read cycle.

For each of the above elements, two conversions are required for each pass.
Because of the quantity of such elements and the frequency of passage it is
essential to implement a real-time efficient conversion algorithm.

We assume a parallel fault emulation with each node represented by a 36-bit
word of the host computer.

180

A collection of m nodes is represented by the set of words

A, = (all' a12' a1,36)

A2 = ta2,) a229 a2,36)

Am = (aml) am2, am,36)

Assume that the corresponding register-level data are represented by the words

Bl = (all, a21, aml, x, x, . ..I

B2 = by2, a22, a m2’ x, x, . . .)

B36 = (a 1,36' a2,36 .- am,369 x3 x3 l -.)

where the x's represent unused bits, with m < 36. -

The resultant conversion algorithms are shown in Figures 18a,18b.

11.3 Preprocessor and Postprocessor

The host processor for this emulation is a Digital Equipment Corporation
model PDPlO. This is a 36 bit machine built around 1970 taking about 1.5 to 3
microseconds for an integer add instruction, depending on addressing mode. The
processor is located at Carnegie-Mellon University in Pittsburgh, Pennsylvania
and was accessed via telephone lines. This machine supports time sharing for
university and research projects in which the university participates.

The emulation was written in the BLISS language. BLISS was developed by
DEC for its own system programming efforts, and is well suited for our applica-
tions. It allows bit manipulation in a very efficient manner while maintaining
many of the structures of a higher order language. The macro facility proved
invaluable in developing an efficient simulation.

The emulation process consists of running three separate programs, a pre-
procesor, the emulation proper, and a postprocessor. The function of the pre-
processor is to select a random set of faults for emulation while the postpro-
cessor interprets and prints the results.

The preprocessor reads in a list of components in the BDX-930 and their
failure rates. The program then queries for the number of faults to be run, and
faults are selected in the manner described in Section 3. Faults are broken up
into sets for each partition, and further into groups of 35 or less for each
emulator run. Ail pertinent information is written out onto disk for processing
by the emulation phase.

The emulation phase runs the BDX-930 emulator program repetitively until
all groups of 35 faults have been processed. After each simulated run, the
results are written out to disk for later processing.

181

The postprocessor takes the results of the emulator runs and prints a
table. It is first decided whether or not the fault was detected, and if so,
during which iteration or step of the test program detection occurred. The
exact location of the fault is determined, and all this information is displayed
for the information of the analyst. Cumulative statistics are also computed.

The true-value emulator was subsequently verified by single stepping
through a self-test program consisting of 2000 executable instructions. The
self-test was designed to exercise every instruction type in the instruction
repertoire of the BDX-930. This is essentially the same procedure used to
validate the hardware version of the processor.

11.4 Typical Circuit Representations

Some typical representations of components are shown in Fi ures 19 thru 22.
Each of these diagrams represents a single integrated circuit C 2 ip, which
is coded in BLISS as a subroutine. In turn each partition consists of sub-
routine calls that simulate a particular function of the CPU.

11.5 Summary of Emulation Characteristics

A summary of emulation characteristics is given in Table 28.

182

TABLE 24 PARALLEL OPERATION OF THE BDX-930 PROCESSOR

BDX - 930 INSTRUCTION FLOW DIAGRAM

+ +
MICRO CYCLE 1 2 3 4 12 3 45 67 8 5 67 8

CALCULATE
INSTRUCTION ADDRESS A B C D A B CD E E F F G G

FETCH 2 A BC D E F

Y 2 AB C D E

LF+’ ; ;- ; L B ,$,&&
,-.

,X Y ZA B B B e DD D
/_ - ---_-. - I--- r-

EFFECTIVE
EXEClJTlON TIME A B C D

I

XYZ - PREVIOUS INSTRUCTIONS
E, F, G = SUBSEQUENT INSTRUCTIONS

@ CONCURRENT CALCULATE INSTRUCTION ADDRESS, FETCH, DECODE AND EXECUTE OF
INSTRUCTIONS

0 8 MICRO CYLES - TOTAL EFFECTIVE EXECUTION TIME

TABLE 25 COMPONENTS OF THE BDX-930 CPU

FAILURE RATE/PER
UNIT

DEVICE (PPMH)
9407 1.3431
2901A 2.1656
2902 0.3898
5440 0.0653
54125 0.0855

54soo 0.0855
54so4 0.1003

54SlO 0.0764
54S20 0.0654
54S32 0.2138

54S288 (32x8 prom)
54S472 (512x8 proms)
54LSOO
54LSO2
54LSO4
54LSO8
54LSll

54LS86
54LS113
54LS151
54LS153
54LS158
54LS169
54LS175
54LS245
54LS253

54LS273

54LS352
54LS367
54LS374
54LS377

0.1787
1.009
0.084
0.084
0.0983

0.0752
0.084
0.084
0.1447
0.1483
0.1447
0.1410
0.6603
0.1703
0.3792
0.1447
0.1636
0.6882
0.2681
0.3117
0.1100
0.7234
0.7148

184

TABLE 26

MICROCIRCUITS AND EQUIVALENT GATE COUNT ____-_- ---__- ---- ---

DEVICE EQUIVALENT GATES

2901A 798

2902 19

54113 8

54151 17

54153 16

54158 15

54169 58

54775 22

54245 18

54253 16

54273 34

54352 16

54374 26

54377 35

9407 143

185

I

COMPUTER CONTROL UNIT ARITHMETIC PROCESSING UNIT (APUI

MEM + 110
CONTROL

CPU

/T‘
L--m-

- EMULATE0 COMPONENT

%iw
UNIT
(PCU)

CPU

?

01 RECT
MEMORY

/ ACCESS

t
I/O !iEM

CONTROL

9-T-l
DEVICES

I

m FAULTED COMPONENT

FIGURE 13. PROCESSOR ARCHITECTURE

186

-____-_-- - -_,__-. .,,-m-.m, , , , . ,. ., , , ., . . , . , ,,,,-,. --, . .-.-II I .m..

(OMA)

P1008

FIGURE 14 BASIC TWO INPUT AND GATE FAULT MODEL

s s s s s 6 TRUE
a a a a a

0 1 0 1 1
3 3 4 4 5 6 7

7

0 Q 0 0 0 0 0

w

hlAT4

6-,lATS

Wr
-QQQllQQ

-1llQlQl

Se1 AT4

6-eOAT6

FIGURE 15 TYPICAL GATE-LEVEL COMPUTATION

TABLE 27 VALUE OF NODES

A -> B

S s S S S s T
a a a a a a R
0 1 0 1 1 0 U
3 3 4 4 5 6 E

1 1 1 1 1 1 1

(21 @ 0 0 0 0 Q 0

0
3-l AND 1

(31 1 ‘I 1 1 1 1
4=2AND2

189

PRESET 0

FIGURE1 6a GATE-LEVEL D-LATCH MODEL

190

ONE ITERATION

CLEAR

FIGURE 16bTYPICAL FUNCTIONAL D LATCH
(THIS CIRCUITRY IS NOT FAULTED)

GATE 1 GATE 2

IN1 BUS

IN 2

FIGURE 17a TRI-STATE BUS

GATE 1 GATE 2

I

GATE FAULTS

f------------1
IN1 - I

I I
INPUT
FAULTS I

TRISTATE I

SIMULATION
BUS

I I

I I

I

I

I
L SW----- -e-e -I

FIGURE T7b SIMULATION OF TRI-STATE BUS -

7 92

Set 51; = (dil, 6i2, 6i;36) , i=1,2, ni

where bii = 1

Sij = 0 when i f j

for K = 1, 2 36:

YES

1 NO

EXIT

NOTE: I'.*' = logical "AND", *p+rt = logical “OR”

FIGURE 18a GATE-LEVEL TO REGISTER-LEVEL CONVERSION ALGORITHM

193

For i = 1,2, . . .) m:

FIGURE 18b

K=K+l

NO

EXIT

REGISTER-LEVEL TO GATE-LEVEL CONVERSION ALGORITHM

194

f

1 cLoIl p

CLEAR

1Q

ld

--CLK 8

-- D DLATC

(C CLR
A

--CLK 9 a
w

-- 0 DLATC

,CLR

DLATC

CLK -+- rD--’

FIGURE 19 IC 175

195

.._

D3

D4

FIGURE 20 Ic 151

196

17 5 Y

c 5W

I .

I

1Y

2Y

FIGURE21 IC 153

197

4A

08

I

3Y

4Y

FIGURE 2’2 IC 158

198

TABLE 28 EMULATOR CHARACTERISTICS

GATE-LEVEL EMULATOR

. CODED IN BLISS

. BDX-930 CPU @ GATE LEVEL

(A FORTIORI, AT COMPONENT-LEVEL)

. MICROPROGRAM MEMORY PROMS (7, 512x8)

.

.

.

.

.

.

.

.

MICROPORGRAM CONTROL PROM (1, 32x8)

MACROINSTRUCTION START ADDRESS PROM (1, 512x8)

MAIN PROGRAM MEMORY (ROM) Q REGISTER-LEVEL

SCRATCHPAD MEMORY (RAM) Q REGISTER-LEVEL

36 CPU'S EMULATED IN PARALLEL

36 SCRATCHPAD MEMORIES EMULATED IN PARALLEL

1 MAIN MEMORY EMULATED AND SHARED BY 36 COPIES

5100 GATES @ 4 NODES/GATE, AVERAGE

33,024 BITS OF PROM @ 1 NODE/BIT

S-A-O, S-A-l FAULTS @ EACH GATE NODE OR BIT

NO FAULTS IN SCRATCHPAD MEMORIES

NO FAULTS IN MAIN MEMORY

67,256 FAULTS POSSIBLE

TRUE-VALUE REAL-TIME RATIO = 21,OOO:l

REAL-TIME RATIO WITH FAULTS = 25,OOO:l

(PDP-10, CMUD COMPUTER)

199

I II

12.0 EXTENSION OF EMULATOR TO MULTIPROCESSOR SYSTEMS

One of the objectives of the present program was to study and make recom-
mendations on how the emulation could be utilized to perform fault injection
experiments on the SIFT (Software Implemented Fault Tolerance) computer system
which was developed by SRI International with Bendix, Flight Systems Division,
as a major subcontractor.

12.1 Description of SIFT (See (ref. 4))

SIFT is an ultra-reliable computer system that is designed for flight cri-
tical aircraft control and avionics applications. It is based on a multipro-
cessor architecture that achieves fault tolerance by replicating computing tasks
among processing units. Error detection and system reconfiguration are per-
formed by software. The SIFT system is shown in Figure 23 in a 7-processor
configuration. A single processor is shown in Figure 24.

Initially, each SIFT processor is assigned a set of software tasks. If a
task is critical it will be redundantly executed by either three or five pro-
cessors, depending upon the criticality of the task. Each processor executing
a critical task inputs sensor data over a dedicated 1553A bus. This data is
stored in memory and transmitted to the other processors over a high speed,
serial, intercomputer data link which operates in a broadcast mode. By means
of a selection algorithm each processor of the redundant set selects the same
inputs, computes its assigned task and transmits the results to the other pro-
cessors over the intercomputer data link.

The results of each computation are compared in the local processors and
any discrepancies are noted. When a faulted processor has been identified the
processor is, thereafter, "ignored" by the other processors. The critical tasks
are then redistributed amoung the remaining processors.

Fault isolation and reconfiguration are the functions of the Global Execu-
tive task which, because of its criticality, is also redundantly computed. The
Global Executive reads the error reports from the local processors and attempts
to identify the faulted processor. When the processor is identified the Global
Executive computes a new distribution of tasks and informs the remaining pro-
cessors of their new assignments.

12.2 SIFT Emulator

The above description of SIFT was given to orient the reader in the SIFT
philosophy and to note that the fault isolation and reconfiguration tasks may be
performed by processors other than those computing the application tasks. As
we shall see presently, implementing this feature will result in an increase in
run-time of the emulator.

200

In order to emulate the SIFT system it is necessary to extend the present
emulation to include the I/O interface hardware, shown in Figure 24, e.g.,

l Transaction and data files

a 1553A controller

l Broadcast sequencer

l Receiver sequencer

l Broadcast bus

The parallel mode of operation of the present emulator automatically accom-
modates a multiprocessor system. Instead of using 36 bits to represent 36 ver-
sions of the same processor the bits are subdivided into sets of 7, 7, 7, 7, 7,
1 with each 7-bit set representing a single version of the SIFT system. The
last bit is extraneous. Faults would then be injected into one of the 7 bits
of each segment and the emulation would be run, exactly as in the present study.
If faults are limited to a single processor and its program memory then it is
only required to emulate the 6 memories of the non- faulted processors and the
5 memories of the faulted processors.

The Preprocessor and Post processor programs would have to be modified to
reflect the new rules of fault injection and fault identification.

In the SIFT emulation only 5 faults can be emulated in a single run. as com-
pared with 35 in the present study. This reduction was the result of emulating
the processor in groups of 7. An apparently attractive alternative approach
would be to emulate the 6, non-faulted processors and 30, faulted processors in
a single run. The problem here is that the action of both the local and global
processors may be different for different faults. As a consequence, it is nec-
essary to emulate the entire SIFT system for each fault. The effect of emulat-
ing 5 instead of 35 faults in a single run is a 7-fold increase in run-time of
the emulator.

12.3 SIFT Fault Insion Experiments --

Having established the essential features of the SIFT emulator we now con-
sider some possible applications.

Experiment #1

Inject a fault and determine the time required to detect and isolate the
fault and reconfigure the system. The data will consist of 3 latency distribu-
tions for time of detection, isolation and reconfiguration.

Experiment #2

From Experiment #l identify those faults which remain latent after several
repetitions of the application task. These faults are likely to remain latent
for long periods of time, making the detection or isolation of subsequent faults
more difficult.

201

The experiment consists of injecting a latent fault in one processor and a ran-
dom fault in another processor of the same redundant set and observing the time
to detect, isolate and reconfigure.

Experiment #3

The results of Experiment #l established the time frame for detection,
isolation and reconfiguration. In this experiment the effect of a second fault
in this time frame will be observed. The first fault is injected as in Experi-
ment #l. A second fault is injected in a different processor of the redundant
set at a randomly selected point in time within the time frame for reconfigura-
tion. The subsequent detection, isolation and reconfiguration will be observed.

Each of these experiments would require a small modification to the Pre-
processor program since they differ in the way faults are injected. In all
experiments the emulator remains unchanged.

202

BROADCAST BUSSES 7

6 6
SENSORS, SENSORS, SENSORS,
SERVOS SERVOS SERVOS

Ml.... M7 MEMORY

Pl.... P7 PROCESSOR FIGURE 23 SIFT SYSTEM

PROCESSOR DATA & ADORESS BUSSES
t

TRANSACTION PTR. :

SENSORS 81

SERVOS

,
TO OTHER

PROCESSORS

FROM OTHER

PROCESSORS

FIGURE 24 SIFT COWUTER

203

13.0 CONCLUSIONS

On the basis of the study we conclude:

a Emulation is a practicable approach to failure modes and effects analysis
of a digital processor.

l The run time of the emulated processor on a PDP-10 host computer is only
20,000 to 25,000 times slower than the actual processor. As a consequence
large numbers of faults can be studied at relatively little cost and in a
timely manner.

o The fault model, although somewhat arbitrary, can be updated as more data
becomes available.

l Gate-level equivalent circuits are available for digital devices including
the 2901.

o Gate-level faults are more difficult to detect than component-level faults.

o A computer self-test program of the order
can detect 98% and possibly 99 or 100% of
feasibility of detecting the same proport i
to be determined.

o Emulation can be an important tool in the

of 2000 executable instructions
component-level faults. The
ons of gate-level faults remains

design of an efficient self-test.

o In a comparison-monitored system the accumulation of latent faults can be
significant. In the study the proportion of undetected faults after 8
repetitions ranged from 40 to 62%.

e For the range of values considered the proportion of undetected faults
after 8 repetitions is a linear function of the number of executable
instructions.

o With a suitable choice of parameters the Urn Model can be used to describe
fault latency in a comparision-monitored system. However, the proposed
alternate model should be investigated.

o Faults in the micromemory are difficult to detect.

0 In a comparison-monitored system most detected faults are detected in the
first repetition of the program. Subsequent repetitions do not appreciably
increase the proportion of detected faults.

l A gate-level emulation of a real processor may contain a large proportion
of indistinguishable faults. Identifying such faults is difficult.

a Only 48% of all detected faults were detected by an explicit subtest of
Self-Test; 52% were detected because the fault resulted in a wild branch.

204

l The results of the present study with regard to latent faults are in re-
markably close agreement with the results of (ref. 1). The similarity is
even more surprising when one considers that (ref. 1) employed a very simple,
idealized processor with only 13 instructions and equally distributed
faults. A comparison of the latency distributions for FETSTO, FIB and
ADDSUB are given in Table 29. Based on this similarity it may be conjec-
tured that the results of the present study can be extrapolated to other
processors of comparable complexity.

205

N

8

REPETITION

1

2

3

4

5

6

7

8

(undetkted)

TABLE 29

COMPARISON OF LATENCY ESTIMATES

FETSTO FIB ADDSUB
DETECTED DETECTED DETECTED

REF (1) PHASE I REF (1) PHASE I

,187 .3 .261 .35

.051 .048 .057 .055

.017 .021 .047 .007

.017 0 .009 .002

.017 0 .028 .002

.042 .006 .033 .002

0 .002 .019 0

.025 ,007 .009 .002

.644 .617 .537 .582

REF (1) PHASE I

.313 .335

.096 ,027

.067 .03

.024 .003

.014 ,005

.014 .003

.019 .002

.004 0

.449 .595

14.0 RECOMMENDATIONS FOR FUTURE STUDIES

l The Phase I experiments should be repeated using flight critical, flight
control computations. The instruction set should not be limited as it
was in the present study. Additional tasks would include

l Determination of the proportion of faults'that affect the control
surfaces.

l Determination of the proportion of faults that prevent failure detection
in the faulted processor.

l Investigate other methods of fault detection such as the use of redundant
computations in a non-redundant processor in a flight critical, flight
flight control application.

l Investigate the feasibility of extending the emulat,ion to I/O interface
devices such as AD and DA converters, I/O controllers, etc.

o Generate more realistic fault models. Perhaps manufacturers could be pre-
vailed upon to supply equivalent circuits that are more closely correlated
with failure modes as well as with performance.

l Develop a more realistic Urn Model. The resultant model could be an impor-
tant tool in reliability modelling of a redundant system.

207

15.0 REFERENCES

1. Nagel, P., "Modeling of a Latent Fault Detector in a Digital System".
NASA CR-145371, 1978.

2. MC Farlane Mood, A., Introduction to the Theory of Statistics, McGraw-
Hill; New York, 1950.

3. Cramer, H., Mathematical Methods of Statistics, Princeton University
Press; Princeton, 1958.

4. Moses, K., Forman, P., “SIFT: Multiprocessor Architecture for Software Im-
plemented Fault Tolerance, Flight Control and Avionics Computers", Pro-
ceedings of the 3rd Digital Avionics Systems Conference, Fort Worth, Texas,
November, 1979.

5. Seshu, S. and Freeman, D.N., "The Diagnosis of Asynchronous Sequential
Switching Systems", IRE Transactions on Electronic Computers, Vol. EC-11
No. 4 August, 1962, pp. 459-465.

6. Hardie, F. H., and Suhocki, R. J., "Design and Use of Fault Simulation for
Saturn Computer Design", IEEE Transactions on Electronics Computers,
Vol. EC-16, No. 4, August, 1967, pp. 412-429.

208

1. Report No. 2. Govnnmmt Accarion No.

NASA CR-3462
4. Title and SubbIle

MEASUREMENT OF FAULT LATENCY IN A DIGITAL
AVIONIC MINI PROCESSOR

3. Recipient’s Catalog No.

6. Refmn Date

October 1981
6. Performing Organizatwx Cods

7. Author~sl

John G. McGough and Fred Swern

6. Perfaming OrgMization NUsmo and Addreu

Flight Systems Division
Bendix Corporation
Teterboro, N.J. 07608

12. Scamoring A~cv Name and Address

-I-- .~ .-_
6. Performing Orgjnuation Report No.

. 10. Work Unit No.

11. Contract or Grant No.
NASl-15946

, 13. Type of Report and Period Covered

Contractor Report
National Aeronautics and Space Administration
Washington, DC 20546

IS. Supplementary Notes

14. Spanswing Agency Code

Langley NASA Project Engineer: Salvatore J. Bavuso
Progress Report

16. Absmcr

This report describes the results of fault injection experiments utilizing
a gate-level emulation of the central processor unit of the Bendix BDX-930
digital computer. The primary objective of the study was to ascertain the
failure detection coverage of comparison-monitoring and a typical avionics
CPU self-test program.

The specific tasks and experiments included:

1. Inject randomly selected gate-level and pin-level faults and emulate
six software programs using comparison-monitoring to detect the faults.

2. Based upon the derived empirical data develop and validate a model of
fault latency that will forecast a software program's detectin ability,

3. Given a typical avionics self-test program, inject randomly selected
faults at both the gate-level and pin-level and determine the propor-
tion of faults detected.

4. Determine why faults were undetected.
5. Recommend how the emulation can be extended to multiprocessor systems

such as SIFT.
6. Determine the proportion of faults detected by a uniprocessor BIT

(built-in-test) irrespective of self-test.

7. K*Y Words &+?n~ed by Author(s)) 18. Oistributiofl Sr;rt9mcnt
Emulation Self-Test
Gate.-Level Comparison-Monitoring Unclassified - Unlimited
Fault Detection
Fault Latency Subject Category 59

9. Sccuitv Oosaif. lof tha report1

Unclassified

I
20. %curitv Claryf. (of this -1

Unclassifi.ed
21. No. of Pagn 22. Pnce

209 Al0

‘FM d8by the NltipM Tchnicaf Infprmatiqn Service, Springfield. Virginia 22161

NASA-Lang1 ey , 1981

